Power is the rate of energy. Mathematically, it is
Power (p) = Energy(E) / Time(t)
Hope this helps!
More sales of traditional, large cars are the most likely consequence of falling petroleum prices.
<h3>Explanation</h3>
Since the majority of conventional, large cars employ combustion engines, these engines need petroleum fuel to operate.
As a result, <em>Choice C—more sales of conventional, large cars</em>—is one of the effects of dropping oil prices that is most likely to occur.
Learn more about petroleum here brainly.com/question/21518946
#SPJ10
Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
Answer:
it is True as the operational definition of electric current.
Explanation:
The definition of electric current is
I = dQ / dt
By convention the direction of the current is the direction in which a positive charge flows.
The initial expression is the derivative that is the change of the load in the unit of time and this occurs in a given cross-sectional cable.
The proposed definition is the same as this, so it is True as the operational definition of electric current.
Answer:
7.5s
Explanation:
Given parameters:
Velocity = 30m/s
Deceleration = 4m/s²
Unknown:
Time it takes for the car to come to complete rest = ?
Solution:
To solve this problem, we use the kinematics expression below:
v = u + at
Since this is a deceleration
v = u - at
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time taken
v - u = -at
0 - 30 = -4 x t
-30 = -4t
t = 7.5s