Answer : The compound that would be most soluble in water is CH3CH2CH2OH
Explanation :
Water is a polar solvent and can dissolve polar molecules. This is based on the principle "Like dissolves like".
Among the given molecules, CH3CH2CH2CH3 is a hydrocarbon known as butane. All hydrocarbons are non polar. Therefore this compound will not be soluble in water.
The remaining compounds are polar, but Ch3CH2CH2OH shows greater solubility in water owing to presence of hydrogen bonding.
Hydrogen bonding is a type of intermolecular force that gets formed when a compound has hydrogen atom directly attached to highly electro-negative N, F or O atom.
When CH3CH2CH2OH is dissolved in water, it forms hydrogen bonds with water molecules. Due to this hydrogen bonding, the molecule shows greater solubility.
Therefore CH3CH2CH2OH is the most soluble compound in water
Answer: Between the alveoli and a network of tiny blood vessels called capillaries, which are located in the walls of the alveoli.
Decreasing the temperature in the reaction vessel keep this reaction from shifting to form more of the product.
As we know that rate of reaction is directly proportional to the concentration of the reactant.
If we increase the concentration of H2 then the rate of reaction increases. So, we keep it constant. Therefore this option is wrong.
By removing the H₂O from the reaction vessel as it almost make no change in the reaction. This can be pursuited the reaction in which product again converted into product.
By increasing the temperature we increases the rate of reaction and equilibrium shift in the forward direction.
Thus, we concluded that by decreasing the temperature in the reaction vessel keep this reaction from shifting to form more of the product.
learn more about rate of reaction:
brainly.com/question/8592296
#SPJ13
I think it’s A. The force of the stirring