Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
Answer: This is from a wiki i found. Approximately one third of a cell’s proteins are destined to function outside the cell’s boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo. Have a nice day.
Explanation: Plz make brainliest
Convert the mass to moles .
85.1 g ÷ 20.18 g/mol = 4.21704658
convert the moles to molecules
4.2170 mol × 6.022^23 molecules/mol = 2.539^24
Answer:
Visible wavelengths range from 0.0007 milimeters for red light, through orange, yellow, green, and blue, to 0.0004 milimeters for violet light.
Ultraviolet is shorter wavelengths than violet.
Hope This Helps.
Answer: 175.35g
Explanation: A 3 M solution has 3 moles of solute per litre.
The mass of one mole of NaCl equals the MW of NaCl MW = 35.45 + 23 =58.45 g/mol
The mass of 3 moles is 58.45 g/mol ×3 mol=175.35 g NaCl or 200 g rounded to one sigfig.