An ionic bond is formed between lithium and bromine.
Answer:
Explanation:
Given parameters:
Mass of aluminium oxide = 3.87g
Mass of water = 5.67g
Unknown:
Limiting reactant = ?
Solution:
The limiting reactant is the reactant in short supply in a chemical reaction. We need to first write the chemical equation and convert the masses given to the number of moles.
Using the number of moles, we can ascertain the limiting reactants;
Al₂O₃ + 3H₂O → 2Al(OH)₃
Number of moles;
Number of moles = 
molar mass of Al₂O₃ = (2x27) + 3(16) = 102g/mole
number of moles =
= 0.04mole
molar mass of H₂O = 2(1) + 16 = 18g/mole
number of moles =
= 0.32mole
From the reaction equation;
1 mole of Al₂O₃ reacted with 3 moles of H₂O
0.04 mole of Al₂O₃ will react with 3 x 0.04 mole = 0.12 mole of H₂O
But we were given 0.32 mole of H₂O and this is in excess of amount required.
This shows that Al₂O₃ is the limiting reactant
<h3><u>Answer;</u>
</h3>
= 607.568 Torr
<h3><u>Explanation;
</u></h3>
1 in of mercury is equivalent to 25.4 Torr
Therefore;
23.92 InHg will be equal to;
23.92 × 25.4
<u>= 607.568 Torr</u>
First, you need to calculate the standard cell potential using standard reduction potential from a textbook or online. Since Mg becomes Mg+2, magnesium is being oxidized because it is losing electrons, you need to flip its potential
Fe+2 + 2e- --> Fe potential= -0.44
Mg+2 + 2e- --> Mg potential= -2.37
Cell potential= (-0.44) + (+2.37)= 1.93 V
Now, you need to use Nernst formula to get the answer. I have attached a PDF with the work.
Answer:
All of the above.
Explanation: Their particles are so close packed together.