Answer:
The correct answer is B.
The
is samller than
of the reaction . So,the reaction will shift towards the left i.e. towards the reactant side.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![Q=\frac{[PCl_3][Cl_2]}{[[PCl_5]^1}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5B%5BPCl_5%5D%5E1%7D)


Given :
= 0.0454
Thus as
, the reaction will shift towards the left i.e. towards the reactant side.
Answer is: <span>the molarity of the diluted solution 0,043 M.
</span>V(NaOH) = 75 mL ÷ 1000 mL/L = 0,075 L.
c(NaOH) = 0,315 M = 0,315 mol/L.
n(NaOH) = c(NaOH) · V(NaOH).
n(NaOH) = 0,075 L · 0,315 mol/L.
n(NaOH) = 0,023625 mol.
V(solution) = 0,475 L + 0,75 L.
c(solution) = 0,023625 mol ÷ 0,550 L.
c(solution) = 0,043 mol/L.
Making toast is a physical change.
*** Please mark this answer as the Brainliest and leave a Thanks if I helped you! :) ***
Answer:
The method is accurate in the calculation of the 
Explanation:
As a first step we have to calculate the <u>average concentration </u>of
find it by the method.

Then we have to find the<u> standard deviation:</u>

For the confidence interval we have to use the formula:
μ=Average±
Where:
t=t student constant with 95 % of confidence and 5 data=2.78
μ=
± 
upper limit: 0.84
lower limit: 0.75
If we compare the limits of the value obtanied by the method (Figure 1 Red line) with the reference material (Figure 1 blue line) we can see that the values obtained by the method are within the values suggested by the reference material. So, it's method is accurate.