Answer:
w = 0.943 rad / s
Explanation:
For this problem we can use the law of conservation of angular momentum
Starting point. With the mouse in the center
L₀ = I w₀
Where The moment of inertia (I) of a rod that rotates at one end is
I = 1/3 M L²
Final point. When the mouse is at the end of the rod
= I w + m L² w
As the system is formed by the rod and the mouse, the forces during the movement are internal, therefore the angular momentum is conserved
L₀ = L_{f}
I w₀ = (I + m L²) w
w = I / I + m L²) w₀
We substitute the moment of inertia
w = 1/3 M L² / (1/3 M + m) L² w₀
w = 1 / 3M / (M / 3 + m) w₀
We substitute the values
w = 1/3 / (1/3 + 0.02) w₀
w = 0.943 w₀
To finish the calculation the initial angular velocity value is needed, if we assume that this value is w₀ = 1 rad / s
w = 0.943 rad / s
Answer:
(e)
Explanation:
At resonance we know that 
That is 



We have given resonance frequency f =4511 Hz and inductance L=1.82 mH
So 



So option e is the correct answer
Answer:
a)
, b)
, c) 
Explanation:
a) The turbine is modelled by means of the First Principle of Thermodynamics. Changes in kinetic and potential energy are negligible.

The mass flow rate is:

According to property water tables, specific enthalpies and entropies are:
State 1 - Superheated steam




State 2s - Liquid-Vapor Mixture




The isentropic efficiency is given by the following expression:

The real specific enthalpy at outlet is:



State 2 - Superheated Vapor




The mass flow rate is:


b) The temperature at the turbine exit is:

c) The rate of entropy generation is determined by means of the Second Law of Thermodynamics:




Answer:
Tension maximum =1131.9 N
Tension minimum =868.28 N
Tension at 3/4= 1065.995 N
Explanation:
a)
Given Mass of wrecking ball M1=88.6 Kg
Mass of the chain M2=26.9 Kg
Maximum Tension Tension max=(M1+M2) × (9.8 m/s²)
=(88.6+26.9) × (9.8 m/s²)
=115.5 × 9.8 m/s²
Tension maximum =1131.9 N
b)
Minimum Tension Tension minimum=Mass of the wrecking ball only × 9.8 m/s²
=88.6 × 9.8 m/s²
Tension minimum =868.28 N
c)
Tension at 3/4 from the bottom of the chain =In this part you have to use 75% of the chain so you have to take 3/4 of 26.9
= (3/4 × 26.9)+88.9) × 9.8 m/s²
= (20.175+88.6) × 9.8 m/s²
=(108.775) × 9.8 m/s²
=1065.995 N