1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
7

What is the instantaneous velocity of the hummingbird at t=1s?

Physics
1 answer:
Liono4ka [1.6K]3 years ago
3 0

The distance - time graph of the humming bird is missing, so i have attached it.

Answer:

Instantaneous velocity = 0.5 m/s

Explanation:

From the attached graph, at time t = 1 s, the corresponding distance is 0.5 m.

Instantaneous velocity is the velocity at that point.

Thus;

Instantaneous velocity = 0.5/1

Instantaneous velocity = 0.5 m/s

You might be interested in
Reading the temperature of a solution by using a thermometer is an example of a(n) ________.
blsea [12.9K]

Answer:

B. Observation

Explanation:

Using a thermometer to read the temperature of a solution is tantamount to the making an observation.

Observation are recorded using our senses of sight, taste, earing, feeling etc or by the use of instrument.

  • Through observation, data is usually collected to make inferences about an experiment.
  • An observation leads to the formulation of a hypothesis which is scientific guess that leads to experimental designs.
  • Conclusions are drawn from the information of data obtained from an experiment.
4 0
3 years ago
The superheroine Xanaxa, who has a mass of 68.1 kg , is pursuing the 75.3 kg archvillain Lexlax. She leaps from the ground to th
Alexandra [31]

The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as

U = mg\Delta h

Here,

\Delta h = Change in height

m = mass of super heroine

g = Acceleration due to gravity

The change in height will be,

\Delta h = h_f - h_i

The final position of the heroin is below the ground level,

h_f = -16.1m

The initial height will be the zero point of our system of reference,

\Delta h = -16.1m-0m

\Delta h = -16.1m

Replacing all this values we have,

U = mg\Delta h

U = (68.1kg)(9.8m/s^2)(-16.1m)

U = -10744.81J

Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J

4 0
4 years ago
If the magnitude of the resultant force is to be 500n, directed along the positive y axis, determine the magnitude of force f an
scoundrel [369]
The answer is 0=45.2 degrees
5 0
3 years ago
A television has a mass of 19 kg. What is the weight of the television?
soldi70 [24.7K]
That depends on how far it is from the nearest planet. If it's on the surface of Earth, it weighs (19 kg) x (9.8 m/s^2) = 186.2 newtons.
7 0
3 years ago
Read 2 more answers
A ball is shot from the ground into the air. At a height of 8.8 m, the velocity is observed to be
Mariulka [41]

Answer:

h = 10.4 m

R = 22.48 m

v= 16,2 m/s , α = 61.7°, below the horizontal

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

Explanation:

The ball describes a parabolic path, and the equations of the movement are:

Equation of the uniform rectilinear motion (horizontal ) :

x = vx*t  :

Equations of the uniformly accelerated rectilinear motion of upward   (vertical ).

y = (v₀y)*t - (1/2)*g*t² Equation (2)

vfy² = v₀y² -2gy Equation (3)

vfy = v₀y -gt Equation (4)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m  

y: vertical position in meters (m)  

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Known data

y= 8.8 m

v = ( (7.7)i + (5.7)j  ) m/s : vx= 7.7 m/s , vy= 5.7 m/s

g = 9.8 m/s²

Calculation of the  initial  vertical velocity ( v₀y)

We apply Equation (3) with the known data

(vfy)² = (v₀y)² -2*g*y

(5.7)² = (v₀y)²- (2)*(9.8)*(8.8)

(5.7)²+ 172.48 =  (v₀y)²

v_{oy} = \sqrt{(5.7)^{2}+ 172.48 }

v₀y = 14.3 m/s

Calculation of the maximum height  the ball rise (h)

In the maximum height vfy=0

We apply the Equation (3) :

(vfy)² = (v₀y)² -2*g*y

0 = (14.3)² - 2*98*h

h = (14.3)² / 19.6

h = 10.4 m

Calculation of the time it takes for the ball to the maximum height

We apply the Equation (4) :

vfy = v₀y -gt

0 = v₀y -gt

gt = v₀y

t = v₀y/g

t = 14.3/9.8

t= 1.46 s

Flight time = 2t = 2.92 s

Total horizontal distance traveled by the ball  (R)

We replace data in the equation (1)

x =vx*t    vx= 7.7 m/s , t =2.92 s  (Flight time)

R = (7.7)* (2.92) = 22.48 m

Velocity of the ball (magnitude (v) and direction (α)) the instant before it hits the ground

vx = 7.7 m/s

vy = v₀y -gt = 14.3 - 9.8* (2.92) = -14.3 m/s

v= \sqrt{v_{x}^{2}+v_{y}^{2}  }

v= \sqrt{(7.7)^{2}+ (-14.3)^{2}  }

v= 16,2 m/s

\alpha = tan^{-1} (\frac{v_{y} }{v_{x} })

\alpha = tan^{-1} (\frac{-14.3 }{7.7 })

α = -61.7°

α = 61.7°, below the horizontal

i- j components of the v

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

5 0
3 years ago
Other questions:
  • A leaky 10-kg bucket is lifted from the ground to a height of 16 m at a constant speed with a rope that weighs 0.7 kg/m. initial
    5·1 answer
  • What is flens, the focal length of the lens? if the lens is converging flens is positive. it the lens is diverging, flens is neg
    15·1 answer
  • How would you describe the magnetic field produced by a current in a straight wire?
    7·2 answers
  • What two things must you know to find the <br> momentum of an object? <br> :( anyone?
    13·2 answers
  • Water is a major agent of chemical weathering because water
    9·1 answer
  • 50 POINTS PICTURE WITH QUESTION AND CHOICES BELOW
    12·2 answers
  • The number of electrons with the number of protons in a charged object
    8·1 answer
  • Sleep is a difficult problem for dolphins because dolphins __________. A. need more sleep than their predators B. must be awake
    5·2 answers
  • Potential and kinetic energy
    14·1 answer
  • Explain how the wave behave as the Frequency changes using the characteristic described in
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!