Using the formula: E = kQ / d² where E is the electric field, Q is the test charge in coulomb, and d is the distance.
E = kQ / d²
k = 9 x 10^9 N-m²/C²
Q = 6.4 x 10^-5 C
d = 2.5 x 10^-2 m
Substituting the given values to the equation, we have:
E = (9 x 10^9)(6.4 x 10^-5) / (2.5 x 10^-2) ²
Electric field at the test charge is 921600000 N/C
Answer:
All electromagnetic radiation, regardless of its wavelength, travels at what is called the "speed of light". In a vacuum, it is measured as 299,792,458 meters per second. 3.0 x 108 meters per second.
Explanation:
The given data is as follows.

Voltage = 2.50 V
Hence, calculate the equivalence capacitor as follows.


= 
C = 
Now, we will calculate the charge across each capacitance as follows.
Q = CV
= 
=
=
Thus, we can conclude that
is the charge stored on each given capacitor.
Explanation:
Given the conditions A,B and C when the pendulum is released, at point A the initial velocity of the pendulum is zero(0), the potential energy stored is maximum(P.E= max),
the conditions can be summarized bellow
point A
initial velocity= 0
final velocity=0
P.E= Max
K.E= 0
point B
initial velocity= maximum
final velocity=maximum
P.E=K.E
point C
initial velocity= min
final velocity=min
P.E= 0
K.E= max
Increasing the level of an incline:
Increases final velocity
Increases the work done
Increases the initial potential energy
Increases the final kinetic energy