Answer:
<h2>3,2 oky na dekh Lena ek bar</h2><h2>2,5</h2>
What is this on, is this on a test?
Answer:
C. amount of charge on the source charge.
Explanation:
Electric field lines can be defined as a graphical representation of the vector field or electric field.
Basically, it was first introduced by Michael Faraday and it is typically a curve drawn to the tangent of a point is in the direction of the net field acting on each point.
The number, or density, of field lines on a source charge indicate the amount of charge on the source charge. Therefore, the density of field lines on a source charge is directly proportional to quantity of charge on the source.
Answer:
fdvevddvevkejokef0jeovdlvkjeuiyv
Explanation:
ddf4edscd
Answer:
the electric field strength on the second one is 2.67 N/C.
Explanation:
the electric fiel on the first one is:
E1 = k×q/(r^2)
r^2 = k×q/(E1)
= (9×10^9)×(q)/(24.0)
= 375000000q
then the electric field on the second one is:
E2 = k×q/(R^2)
we know that R = 3r
R^2 = 9×r^2
E2 = k×q/(9×r^2)
= k×q/(9×375000000q)
= k/(9×375000000)
= (9×10^9)/(9×375000000)
= 2.67 N/C
Therefore, the electric field strength on the second one is 2.67 N/C.