<u>Answer:</u> The number of moles of HI in the solution is
moles.
<u>Explanation:</u>
We are given:

To calculate the concentration of a substance, we use the equation:
......(1)
- Concentration of ammonia:
![[NH_3]=\frac{0.405mol}{4.90L}=0.083mol/L](https://tex.z-dn.net/?f=%5BNH_3%5D%3D%5Cfrac%7B0.405mol%7D%7B4.90L%7D%3D0.083mol%2FL)
- Concentration of ammonium iodide:
![[NH_4I]=\frac{1.45mol}{4.90L}=0.30mol/L](https://tex.z-dn.net/?f=%5BNH_4I%5D%3D%5Cfrac%7B1.45mol%7D%7B4.90L%7D%3D0.30mol%2FL)
For the given chemical reaction:

The expression of
for above equation follows:
![K_c=\frac{[HI][NH_3]}{[NH_4I]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5BNH_3%5D%7D%7B%5BNH_4I%5D%7D)
Putting values in above equation, we get:
![7.0\times 10^{-5}=\frac{[HI]\times 0.083}{0.30}](https://tex.z-dn.net/?f=7.0%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%5BHI%5D%5Ctimes%200.083%7D%7B0.30%7D)
![[HI]=2.53\times 10^{-4}](https://tex.z-dn.net/?f=%5BHI%5D%3D2.53%5Ctimes%2010%5E%7B-4%7D)
Calculating the moles of hydrogen iodide by using equation 1, we get:

Hence, the number of moles of HI in the solution is
moles.
Answer:
Most similar ----- Lithium
Least similar ---- Nitrogen
Explanation:
Cesium is an element on the periodic with the atomic number 133. It lies in group 1 (i.e., the alkali metals) and period 6 on the periodic table. The oxidation state of group 1 metals is +1. Cesium forms an oxide with oxygen as
.
The most similar compound to this chemical compound is Lithium because Lithium happens to be in the same group one metal with Cesium and forms the compound
with the oxygen
The least similar compound nitrogen due to fact that it is an oxide that is covalent in nature and lies between-group 3 -17 to form an
with oxygen.
Answer:
Random samples
Explanation:
It needs to be random so that there isn't bias that would skew the consistency
Answer:
H^+(aq) + OH^-(aq) —> H2O(l)
Explanation:
We'll begin by writing the balanced equation for the reaction.
2HCl(aq) + Ca(OH)2(aq) —> CaCl2(aq) + 2H2O(l)
Ca(OH)2 is a strong base and will dissociates as follow:
Ca(OH)2(aq) —> Ca^2+(aq) + 2OH^-(aq)
HCl is a strong acid and will dissociates as follow:
HCl(aq) —> H^+(aq) + Cl^-(aq)
Thus, In solution a double displacement reaction occurs as shown below:
2H^+(aq) + 2Cl^-(aq) + Ca^2+(aq) + 2OH^-(aq) —> Ca^2+(aq) + 2Cl^-(aq) + 2H2O(l)
To get the net ionic equation, cancel out Ca^2+ and 2Cl^-
2H^+(aq) + 2OH^-(aq) —> 2H2O(l)
H^+(aq) + OH^-(aq) —> H2O(l)