Solution :
Given :
M = 0.35 kg

Total mechanical energy = constant
or 
But
and 
Therefore, potential energy at the top = kinetic energy at the bottom


(h = 35 cm = 0.35 m)
= 2.62 m/s
It is the velocity of M just before collision of 'm' at the bottom.
We know that in elastic collision velocity after collision is given by :

here, 
∴ 

= 0.33 m/s
Therefore, velocity after the collision of mass M = 0.33 m/s
Answer:
When we burn wood we are releasing solar energy, in the form of heat, that has been stored in the wood as chemical energy. The process of photosynthesis converted solar energy, water and carbon dioxide into oxygen and the organic molecules that form the wood, half the weight of which is carbon.
Explanation:
The magnitude of the magnetic moment due to the electron's motion is
.
<h3>
What is magnetic moment?</h3>
The magnetic pull and direction of a magnet or other object that produces a magnetic field are referred to as the magnetic moment in electromagnetism. Things that have magnetic moments include electromagnets, permanent magnets, various compounds, elementary particles like electrons, and a number of celestial objects (such as many planets, some moons, stars, etc).
The term "magnetic moment" really refers to the magnetic dipole moment of a system, which is the portion of the magnetic moment that can be represented by an equivalent magnetic dipole or a pair of magnetic north and south poles that are only very slightly apart. The magnetic dipole component is adequate for sufficiently small magnets or over sufficiently large distances.
Calculations:
radius= 
velocity=
Working formula, M=N/A


=


=
M=
=
To learn more about magnetic moment ,visit:
brainly.com/question/14298729
#SPJ4
The mass of the car is 2000 kg
Explanation:
We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
is the net force
m is the mass
a is the acceleration
In this problem, we have:
is the acceleration of the car
Each person applies a force of 400 N, and there are five men, so the total force applied is

Therefore, the mass of the car is:

Learn more about Newton's second law of motion:
brainly.com/question/3820012
#LearnwithBrainly