Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:
f = f0(1 + v/c)
115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span>
v = 51,45 m/s </span>
Answer:
I know that T= kx where T is the tension which equaka the force og gravity = mg = 1.37 * 10 = 13.7 x is the elongation of the spring so the length after dangling the object minus the original length.
I hope it helps
plz let me know if it is wrong or right.
Answer:
because each row increases in atomic mass by a specific number, so anything over five is in the second row.
Answer:
- path differnce = 2.18*10^-6
- 1538 lines
Explanation:
- The path difference for the waves that produce the pattern of diffraction, is given by the following formula:
(1)
d: separation between slits = 0.50mm = 0.50*10^-3 m
θ: angle of a diffraction = 0.25°
Then, the path difference is:

- The maximum number of bright lines are calculated by using the following formula:
(2)
m: order of the bright
λ: wavelength = 650nm
The maximum bright is calculated for an angle of 90°:

The maxium number of bright lines are twice the previous result, that is, 1538 lines
Answer:

<u />

Explanation:
Given:
- mass of particle A,

- mass of particle B,

- mass of particle C,

- All the three particles lie on a straight line.
- Distance between particle A and B,

- Distance between particle B and C,

Since the gravitational force is attractive in nature it will add up when enacted from the same direction.
<u>Force on particle A due to particles B & C:</u>



<u>Force on particle C due to particles B & A:</u>
<u />
<u />


<u>Force on particle B due to particles C & A:</u>
<u />
<u />
<u />
<u />
<u />
<u />