Answer:
w = vR/3
Explanation:
The centre of mass of the loop to bullet system is given by D / 4 from centre of loop, which is equivalent to R / 2 from its centre.
From the principle of conservation of linear momentum
, we have
m*v = 2*m* Vcm
Where v = velocity of bullet, Vcm = velocity of wood
Hence, we have
Vcm = v2
Also, from the conservation of angular momentum about the centre of mass.
M*V*(R/2) = Ic*w - equation (I)
where Ic = moment of inertia and w = angular velocity
Ic for a ring is given by
Ic of a bullet is given by
Hence, the moment of inertia of the system is given by the summation of the two moments of inertia Ic(ring) + Ic(bullet) which gives
Ic(system) = 
Substituting back into equation (I), we have

Hence, we obtain w =vR/3
w=v3R
Answer:
Fluids exert forces on objects because of many molecules of the fluid that continuously collide with the surfaces of the object immersed in the fluid. ... A steel boat floats on water but a steel block does not because the block has more weight than the steel boat due to the buoyant force.
Explanation:
Answer:
The answer to your question is Pe = 2452.5 J
Explanation:
Data
mass = 50 kg
height = 5 m
gravity = 9.81 m/s²
Process
The energy of this process is Potential energy which is proportional to the mass of the body, the gravity and the height of the body.
Pe = mgh
Substitution
Pe = (50)(5)(9.81)
Simplification
Pe = 2452.5 J
Answer:
230 N
Explanation:
At the lowest position , the velocity is maximum hence at this point, maximum support force T is given by the branch.
The swinging motion of the ape on a vertical circular path , will require
a centripetal force in upward direction . This is related to weight as follows
T - mg = m v² / R
R is radius of circular path . m is mass of the ape and velocity is 3.2 m/s
T = mg - mv² / R
T = 8.5 X 9.8 + 8.5 X 3.2² / .60 { R is length of hand of ape. }
T = 83.3 + 145.06
= 228.36
= 230 N ( approximately )