Answer:
The law zero of thermodynamics.
Explanation:
The law zero of thermodynamics, which tells us that heat flows from a body at a higher temperature to another body with lower temperature, when the heat transfer is zero, it is said that the two bodies are in thermal equilibrium, their temperatures are equal
Answer:
c) It has a greater frequency than red light but a smaller frequency than blue light.
Explanation:
According to the relation:
c = frequency × Wavelength
The higher the frequency, the lower the value of wavelength
The order of wavelength is:
Violet < Indigo < Blue < Green < Yellow < Orange < Red
Stated above, frequency is inversely proportional to the wavelength. Thus, the order of wavelength is:
Violet > Indigo > Blue > Green > Yellow > Orange > Red
Thus,
<u>Green light has lower frequency than blue light and higher than red light.</u>
1. Vpa = 180m/s. @ 0 deg.
Vag = 40m/s @ 120 deg,CCW.
<span>
Vpg = Vpa + Vag,
Vpg = (180 + 40cos120) + i40sin120,
Vpg = 160 + i34.64,
Vpg=sqrt((160)^2 + (34.64)^2)=163.7m/s.
</span>
<span>2. tanA = Y / X = 34.64 / 160 = 0.2165,
A = 12.2 deg,CCW. = 12.2deg. North of
East. </span>
3. 1 hr = 3600s. <span>d = Vt = 163.7m/s * 3600s = 589,320m.
hope this helps</span>
Answer:
The equation of current is 
Explanation:
Resistance, R = 12 ohm
Inductance, L = 0.06 H
E (t) = 12 cos (120 t)
Compare with the standard equation,


So, the inductive reactance is
XL = w L = 120 x 0.06 = 7.2 ohm
The impedance of the circuit is

The current leads by 90degree so the equation of current is

'Doing work' is a way of transferring energy from one object to another, energy is transferred when a force moves through a distance.
If i explain with formula
Work done (J) = Energy transferred (J)
So more energy, more work done bc u transferred more energy to move the object and doing the work. and if you only use a little of energy, the work done also only a little.