Answer:
91.3 kg
Explanation:
weight = m*g
m: mass
g: gravity = 9.8 or 10 (depends on what your instructor tells you to use)
mass = w/g
895/9.8 = 91.3 KG
Answer:
a) total moment of inertia is 1359.05 kg m^2
b) angular acceleratio is 0.854rad/sec^2
Explanation:
Given data:
m1=6.9 kg
L=4.88 m
m2=34.5 kg
R=1.22 m
we klnow that moment of inertia for rod is given as
J1=(1/12) ×m×L^2

moment of inertia for sphere is given as
J1=(2/5) ×m×r^2

As object rotates around free end of rod then for sphere the axis around what it rotates is at a distance of d2=L+R
For rod distance is d1=0.5*L
By Steiner theorem
for the rod we get 

for the sphere we get 

And the total moment of inertia for the first case is

b) F=476 N
The torque for system is given as

where a is angle between Force and distance d
and where d represent distance from rotating axis.
In this case a = 90 degree

M=476*2.44 = 1161.44 Nm
The acceleration is calculated as

= 0.854 rad/sec^2
Explanation:
Kepler’s third law states that for all objects orbiting a given body, the cube of the semimajor axis (A) is proportional to the square of the orbital period (P).
For each of our planets orbiting the Sun, the relationship between the orbital period and semimajor axis can be represented by the equation as:

k is constant of proportionality
It is required to solve the above equation for k

Answer:
The beta decay takes place.
Explanation:
The reaction of radioactivity of carbon 14 to nitrogen 14 is
There is a beta decay.
The reaction is

Here some energy is released in form of neutrino.
Passengers in an aircraft are subject to the Normal and Gravity Force acting on them at a low 'orbit', so tiny that it can be many times compared to the same surface of the earth when speaking in general terms.
In a high orbit space vehicle or in the same space, said force decreases considerably or simply disappears, generating the sensation of weightlessness.
Remember that the Force of Gravity is given under the principle

Where,
G = Gravitational Universal constant
M = Mass of the planet
m = mass of the object
r = Distance from center of the planet
When the radius grows considerably the gravitational force begins to decrease.