A force vector F1 points due
east and has a magnitude of 200 Newtons, A second force F2 is added to F1. The
resultant of the two vectors has a magnitude of 400 newtons and points along
the due east/west line. Find the magnitude and direction of F2. Note that there
are two answers.
<span>The given values are
F1 = 200 N</span>
F2 =?
Total = 400 N
Solution:
F1 + F2 = T
200 N + F2 = 400N
F2 = 400 - 200
F2 = 200
N
Answer:
A
Explanation:
absolute magnitude and luminosity vs the spectral position/ temperature
Answer:
The tube should be held vertically, perpendicular to the ground.
Explanation:
As the power lines of ground are equal, so its electrical field is perpendicular to the ground and the equipotential surface is cylindrical. Therefore, if we put the position fluorescent tube parallel to the ground so the both ends of the tube lie on the same equipotential surface and the difference is zero when its potential.
And the ends of the tube must be on separate equipotential surfaces to optimize potential. The surface near the power line has a greater potential value and the surface farther from the line has a lower potential value, so the tube must be placed perpendicular to the floor to maximize the potential difference.
Answer:
B. 85 V
Explanation:
E(rms) = E(peak-to-peak) / squareroot(2)
E(rms) = 120V / 1.414 = 84.9 V
(When rounded) = 85 V
The highest frequency (f) at which the source can operate is given as:
f = 55.133Hz.
<h3>What are sinusoidal waves?</h3>
The most realistic representation of how many objects in nature change state is a sine wave or sinusoidal wave.
A sine wave depicts how the intensity of a variable varies over time.
<h3>What is the calculation justifying the above result?</h3>
P = (1/2) μω²A²v
300W = 1/2 (4 X 10⁻²kg/m) ω₂ (0.05m)²v
Thus the wave speed is:
v = √(T/μ)
= √[(100N)/(4 X 10⁻²kg/m)
= 50m/s
300W = 1/2(4 X 10⁻²kg/m) ω²(0.05m)² (50m/s)
⇒ ω = 346.41 1/s
ω = 346.41 1/s
= 2πf
⇒ f = 55.133Hz
Learn more about Sinusoidal waves:
brainly.com/question/20912200
#SPJ4