The correct answer is 19.72 °C. The first step is to determine the amount of heat that was lost per gram (30,000 J) / (390 g) = 76.92 J/g. Then to determine the temperature change, divide 76.92 J/g with the given specific heat of milk (76.92 J/g) / (3.9 J/g°C) = 19.72 °C.
Answer:
<h3>The binding energy of sodium Na=<em>5.407791×10⁹J</em></h3>
Explanation:
<h3>Greetings !</h3>
Binding energy, amount of energy required to separate a particle from a system of particles or to disperse all the particles of the system. Binding energy is especially applicable to subatomic particles in atomic nuclei, to electrons bound to nuclei in atoms, and to atoms and ions bound together in crystals.
<h2>Formula : Eb=(Δm)c²</h2><h3>where:Eb= binding energy</h3><h3> .Δm= mass defect(kg)</h3><h3> c= speed of light 3.00×10⁸ms¯¹</h3><h2 /><h3>
<u>Given</u><u> </u><u>values</u></h3>
- m= 18.02597
- c=3.00×10⁸ms¯¹
<h3><u>required </u><u>value</u></h3>
<h3><u>Solution:</u></h3>
- Eb=(Δm)c²
- Eb=(18.02597)*(3.00*10⁸ms¯¹
- Eb=5.407791*10⁹J
Answer:
C) upward
Explanation:
The problem can be solved by using the right-hand rule.
First of all, we notice at the location of the negatively charged particle (above the wire), the magnetic field produced by the wire points out of the page (because the current is to the right, so by using the right hand, putting the thumb to the right (as the current) and wrapping the other fingers around it, we see that the direction of the field above the wire is out of the page).
Now we can apply the right hand rule to the charged particle:
- index finger: velocity of the particle, to the right
- middle finger: direction of the magnetic field, out of the page
- thumb: direction of the force, downward --> however, the charge is negative, so we must reverse the direction --> upward
Therefore, the direction of the magnetic force is upward.
If F =m*a
and the question says how much force the s needed to accelerate a 68kg skier to a rate of 1.2ms^-2
Then F = 68*1.2