To know the acceleration, we need to know to weight and the speed. So in this case, it is in known.
v
Convert the given temperatures from celsius to kelvin since we are dealing with gas.
To convert to kelvin, add 273.15 to the temperature in celsius.
T1 = 22 + 273.15 = 295.15 k
T2 = 4 + 273.15 = 277.15 k
V1 = 0.5 L
Let's find the final volume (V2).
To solve for V2 apply Charles Law formula below:
control is constant for given set of readings.
set indep var
observe dep var
The complete options are;
A. The average kinetic energy of their particles is the same.
B. The total kinetic energy of their particles is equal.
C. Heat flows from the larger object to the smaller object.
D. Heat flows from the object with higher potential energy to the object with lower potential energy.
Answer:
Explanation:
From the relationship between average kinetic energy and temperature, we have the formula;
E_k = (3/2)kT
Where;
k is a constant known as boltzmann constant.
T is known as temperature
We can see that at the same temperature (T), kinetic energy will remain the same because from the formula, E_k depends km only the temperature.
Thus, average kinetic energy of their particles saying that.
Answer:
An apple hanging at a branch has potential energy due its position. It can be written as PE= mgh where m is the mass of the apple h is the distance between the apple and the ground and g is the acceleration due to gravity.
as the apple falls from the tree it loses its potential energy and gains kinetic energy due to the movement of the apple. Its kinetic energy will be given by KE= 1/2mv² where m is the mass of the apple and v is the speed with which the apple falls.
As the apple falls the height or the distance reduces and PE becomes reduces. But it gains Kinetic energy due to its speed.
But when the apple falls to the ground and comes to rest its kinetic energy is converted to potential energy.
thus the total energy remains the same. it changes from one form to the other but remains unaltered.