Answer:
C. while the magnet is moving
Explanation:
Electromagnetic induction implies the production of electric current by mere movement of a magnet with respect to a coil or wire.
In the given question, current would be induced in the wire only when the magnet moves. That is either when the magnet is pushed into a wire, or when pulled out. But no current would flow through the wire when the magnet is left there for a while.
The current is induced because of the motion involved. Thus, the appropriate option is C.
Answer:
Explanation:
a) the speed increment of the hammer as it drops past the first window, is greater than that of the speed of the hammer as it drops past the second window. This can also be translated as saying that the hammer spent more time at the second window.
b) III
The best answer would be answer III, The hammer spends more time dropping past window 1, which I had already included in my explanation in (a) above.
The answer is B. Bye because B those study speed.
Starting making jokes and rapping
The work done against gravity is 100 J
Explanation:
The work done against gravity in order to lift an object is equal to the change in gravitational potential energy of the object:

where
m is the mass of the object
g is the acceleration of gravity
is the change in height of the object
For the object in this problem, we have:
m = 5 kg


Substituting into the equation,

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly