Answer:
a) 0.6636
b) 0.0951
c) 0,9474
d) 0.0047
e) 0.9957
f) 0.1308
Step-by-step explanation:
We look in tables z values and then we see carefully aereas inside normal curve
a) P[- 1.46 < z < 0.63 ] point 1.46 from table 0.0721 this s th area from value -1.46 to the left . And the value z = 0.63 corresond to the area 0.7357 which includes the area between 1.46 to the left tail, then we have to subtarct and get 0.6636 .
P[- 1.46 < z < 0.63 ] = 0.6636 66.36 %
b) P [ 0 < z < 1.31 ] we just need the area for point 1.31 that is 0.0951
P [ 0 < z < 1.31 ] = 0.0951 9.51 %
c) P [z > - 1.62 ] = 1 - 0.0526
P [z > - 1.62 ] = 0,9474 94.74 %
d) P[z < - 2.6 ] = 0.0047 0.47 %
e) P [ z < 2.63 ] = 1 - 0.0043
P [ z < 2.63 ] = 0.9957 99.57 %
f) P [ -2.58 < z < -1.1 ] = 0.1357 - 0.0049 =
P [ -2.58 < z < -1.1 ] = 0.1308 13.08 %
Whether~1.F(x)*G(x),
2. F(x)+G(x),
3.F(G(x)),
4.F(x)=G(x) ?