Normally, when something gets colder, its electrical resistance gets smaller. This is true of component-A in the drawing ... a simple resistor.
The component labeled 'B' has a strange and unusual symbol, and it's not a simple resistor. It's a "thermistor". The word "thermal" always has something to do with heat, and "thermistor" comes from "thermal resistor. These things can be manufactured either way ... using different materials, a thermistor can be manufactured so that its resistance goes UP, or goes DOWN, or doesn'tchange when it gets colder. I'm pretty sure that's what's going on here.
When this circuit gets colder, resistance-A gets smaller, but resistance-B either gets bigger OR doesn't change. Either way, the voltage across B increases. Since the LED is connected directly across B, the current through it depends on that voltage, so the LED gets more current, and becomes brighter, when A and B both get colder.
This circuit could actually be a very useful device. If you took out the LED and put a voltmeter in its place, then the reading on the voltmeter would tell you the temperature of wherever you put the two components A and B.
<h3>Hi there !</h3><h2>Option A is correct </h2>
<h3> Please refer the attachment for explanation</h3><h2>Stay safe, stay healthy and blessed</h2><h2>Have a marvelous day</h2><h2>Thank you</h2>
Let the mass of 2500 kg car be and it's velocity be and the mass of 1500 kg car be and it's velocity be .
After the bumping the mass be M and it's velocity be V.
By law of conservation of momentum we have
2500 * 5 + 1500 * 1=4000 * V
V = 14000/4000 = 7/2 = 3.5 m/s
So the velocity of the two-car train = 3.5 m/s
Answer:
The principle of conservation of energy and angular momentum
Explanation:
At point A, the car experienced maximum of potential energy
As it moves down the hill, the potential energy decreases while the kinetic energy increases.
The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .
If you could please give me a already given speed I could estimate it. since there is no speed shown you wouldn't be able to estimate the speed of the moving train.