Answer:
(a) 0.177 m
(b) 16.491 s
(c) 25 cycles
Explanation:
(a)
Distance between the maximum and the minimum of the wave = 2A ............ Equation 1
Where A = amplitude of the wave.
Given: A = 0.0885 m,
Distance between the maximum and the minimum of the wave = (2×0.0885) m
Distance between the maximum and the minimum of the wave = 0.177 m.
(b)
T = 1/f ...................... Equation 2.
Where T = period, f = frequency.
Given: f = 4.31 Hz
T = 1/4.31
T = 0.23 s.
If 1 cycle pass through the stationary observer for 0.23 s.
Then, 71.7 cycles will pass through the stationary observer for (0.23×71.7) s.
= 16.491 s.
(c)
If 1.21 m contains 1 cycle,
Then, 30.7 m will contain (30.7×1)/1.21
= 25.37 cycles
Approximately 25 cycles.
(c) When the two pulses completely overlap on the string forms a straight line.
A single disturbance that travels via a transmission medium is referred to as a pulse. This medium might be formed of stuff or a vacuum, and it might be endlessly large or finite in size.
Consider two pulses that are identical in shape and proceed in opposite directions along a string, with the exception that one has positive displacements of the string's elements while the other has negative displacements.
On the string, the two pulses blend together completely.
The pulses completely balance one another out in terms of removing string elements from equilibrium, yet the string still moves. Shortly after the string is once again shifted, the pulses will have passed each other.
The correct option is (c)
Learn more about pulse here:
brainly.com/question/14885673
#SPJ4
The quest to put Americans on the moon before the Soviets do. During the Space Race, a couple of astronauts went up into space only to be tragically killed in an explosion.
Sound intensity = 1/(r^2)
That is Sound intensity is indirectly proportional to the distance. Therefore, sound becomes 9 times less intense.
Answer:
Explanation:
KE = ½Iω²
ΚΕ = ½(mL²/3)ω²
ΚΕ = ½(0.63(0.82²)/3)4.2²
ΚΕ = 1.24541928
KE = 1.2 J