1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jet001 [13]
3 years ago
9

What force must the worker exert to get the box moving & what force must the worker exert to accelerate the box at 0.1 meter

s per second squared to the south?

Physics
1 answer:
photoshop1234 [79]3 years ago
3 0

Since static friction is the minimum force required to just start the motion of a stationary object.

Here if we need to start an object from rest then we required F = 700 N

So for the first part of the above problem Force will be F = 700 N

Now if the box is already moving then we will have to use kinetic friction force between box and floor

now we can write the equation of net force as

F - F_k = m*a

here

F_k = kinetic friction = 220 N

m = mass = 500 kg

a = acceleration = 0.1 m/s^2

now we will have

F - 220 = 500* 0.1

F = 220 + 50 = 270 N

You might be interested in
A forest fire wipes out all of the plant life in an area, causing the animals to leave. The ground becomes a mixture of soil and
algol [13]
I think it might be c but I might be wrong
4 0
3 years ago
Read 2 more answers
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
2 years ago
A ball is thrown straight up into the air and passes a window 3 seconds after being released. It passes the same window on its w
melomori [17]

The  initial velocity of the ball is 55.125 m/s.

<h3>Initial velocity of the ball</h3>

The initial velocity of the ball is calculated as follows;

During upward motion

h = vi - ¹/₂gt²

h = vi - 0.5(9.8)(3²)

h = vi - 44.1 ----------------- (1)

During downward motion

h = vi + ¹/₂gt²

h = 0 + 0.5(9.8)(1.5)²

h = 11.025 ----------- (2)

solve (1) and (2) together, to determine the initial velocity of the ball

11.025 = vi - 44.1

vi = 11.025 + 44.1

vi = 55.125 m/s

Thus, the  initial velocity of the ball is 55.125 m/s.

Learn more about initial velocity here: brainly.com/question/19365526

#SPJ1

8 0
1 year ago
What is a suspension bridge- in your own words please and ty
PIT_PIT [208]
A bridge supported by vertical cables which then leads to more support from larger cables.
4 0
3 years ago
An ambulance driver traveling at 31.0 m/s (69.3 mph) honks his horn as he sees a motorist ahead on the highway traveling in the
IrinaVladis [17]

Answer:

fo = 378.52Hz

Explanation:

Using Doppler effect formula:

f'=\frac{C-Vb}{C-Va}*fo

where

f' = 392 Hz

C = 340m/s

Vb = 20m/s

Va = 31m/s

Replacing these values and solving for fo:

fo = 378.52Hz

4 0
3 years ago
Other questions:
  • A boy and a girl are riding a merry- go-round which is turning ata constant rate. The boy is near the outer edge, while a girl i
    10·1 answer
  • What is the resultant displacement? Explain please to
    10·1 answer
  • 1. A school bus moves at 15 m/s relative to Logan standing on the street. If Harrison walks towards the
    7·1 answer
  • Work is done on a locked door that remains closed while you try to pull it open. True False.
    10·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!<br><br> What types of waves are Sound Waves?
    6·1 answer
  • Cations are formed by gaining protons losing protons gaining electrons losing electrons
    13·1 answer
  • Gases have an indefinite shape and volume
    10·1 answer
  • PLEASE HELP IVE BEEN STUCK ON THIS FOR 3HOURS!
    6·1 answer
  • Speed is a vector quantity. Do you agree? Justify your answer.
    13·2 answers
  • A 0.300 kg mass is attached to
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!