Answer:
mass = 0.18 [kg]
Explanation:
This is a classic problem where we can apply the definition of density which is equal to mass over volume.
![density = \frac{mass}{volume} \\\\where:\\volume = 1 [m^3]\\density = 0.18[kg/m^3]](https://tex.z-dn.net/?f=density%20%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5C%5C%5Cwhere%3A%5C%5Cvolume%20%3D%201%20%5Bm%5E3%5D%5C%5Cdensity%20%3D%200.18%5Bkg%2Fm%5E3%5D)
mass = 0.18*1
mass = 0.18 [kg]
Speed of any freely falling object is always same. Provided, both are left to fall from the same height. If you perform this experiment in a perfect vacuum or near vacuum laboratory, both of them will reach ground with same velocity this is because there is no resistance to their motion. This is always true no matter where you go and perform this experiment.
It can be easily proved from conservation of mechanical energy. Why conserving energy? because there are no forces acting on the freely falling objects other than conservative force(mg).
Answer:
Explanation:
(a) It is given that Joseph jogs on a straight road of 300m in a time interval of 2 minutes and 30 seconds, which is equal to 150seconds. Therefore, when Joseph jogs from point A to point B, he covers a distance of 300m in time of 150seconds. Hence, his average speed is 300m/150s=2ms^−1. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m.
Hence, his average velocity is 300m/150s=2ms^−1
(b) Then it is given that he turns back and points B and jogs on the same road but in the opposite direction for a time interval for 1 minute and covers a distance of 100m.If we consider the whole motion of Joseph, i.e. from point A to point C, then he covers a total distance of 300m+100m=400m. And he covers this total distance in a time interval of 2.5min+1min=3.5min=210s.
Therefore, his average speed for this journey is 400m210s=1.9ms−1.
For the same journey is displacement is equal to the distance between the points A and C,i.e. 300m−100m=200m.
Hence, his average velocity for this case is 200m/210s=0.95ms^−1
Answer:
F= 0.009 N
Explanation:
Given that
Charge ,q= 5.13 μC
Velocity ,V= 8.64 x 10⁶ m/s
Magnetic field , B = 1.99 x 10⁻⁴ T
The force on a charge q moving with velocity v is given as follows
F= q V B
Now by putting the values in the above equation we get
[tex]F= 5.13\times 10^{-6}\times 8.64\times 10^{6}\times 1.99\times 10^{-4}\ N [\tex]
F=0.00882 N
F= 0.009 N
Therefore the force on the particle will be 0.009 N.
Answer:
The induced current in the resistor is I = BLv/R
Explanation:
The induced emf ε in the long bar of length, L in a magnetic field of strength, B moving with a velocity, v is given by
ε = BLv.
Now, the current I in the resistor is given by
I = ε/R where ε = induced emf in circuit and R = resistance of resistor.
So, the current I = ε/R.
substituting the value of ε the induced emf, we have
I = ε/R
I = BLv/R
So, the induced current through the resistor is given by I = BLv/R