Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>
The answer is; A
By using a spring and determining the tension applied on the string by the car, it is possible to deduce the force. Determine the spring's initial tension as well as spring rate and working loads;
Rate = (Load – Initial Tension) ÷ Travel
k = (L – IT) ÷ T
Answer:
B
Explanation:
the fluorine has an high tendency to gain electrons from other elements with lower electronegativities
Answer:
true
Explanation:
Heat travels from the hot cocoa in the cup to your hands. No energy is transferred. Heat is transferred from your hands to the hot cocoa in the cup.
2H₂ + O₂ = 2H₂O
n(H₂)=m(H₂)/M(H₂)
n(H₂)=5g/2.0g/mol=2.5 mol
n(O₂)=m(O₂)/M(O₂)
n(O₂)=40g/32.0g/mol=1.25 mol
H₂ : O₂ = 2 : 1
2.5 : 1.25 = 2 : 1
n(H₂O)=n(H₂)=2n(O₂)=2.5 mol
m(H₂O)=n(H₂O)M(H₂O)
m(H₂O)=2.5mol*18.0g/mol=45.0 g