100(whole class is 100%) / 6060(number of students total) = any random student chance
0.0165
A) for democrats multiply chance of any random student with number of democrats
0.0165×4040=66.66666...
B) for business majors, multiply that chance with number of business majors
0.0165×1010=16.66666...
C) for both business major and democrat multiply chance with numbers of students who are both
0.0165×33=0.544...
Answer:
the 2 one
Step-by-step explanation:
We have the triangle 30° - 60° - 90°.
The lenght of the sides are in proportion: 

First we must construct an equation to model the problem. (In this case we will use an inequality instead) This is what I came up with:
450.20+0.15s>=600.10
This equation shows how if her base earnings ($450.20) are added to 15% of her sales, represented by s, then the total will be greater than or equal to $600.10
Next, we simply solve for s. (steps shown below)
1) 450.20+0.15s>=600.10 (simply restating the inequality)
2) 0.15s>=149.90 (here I isolated the variable)
3)0.15s/0.15>=149.90/0.15 (Finally I solve for s by dividing both sides by 0.15, this will isolate s on the left and leave the answer on the right)
4) s>=999.33... (here I found the total sales the salesperson would need to reach his/her goal of earning a minimum of $600.10; the 3's after the decimal are repeating so in the next step I will round up to the nearest hundredth (b/c this is what money is rounded to and if I round down he/she would make less than her goal. This means i must round up.))
5) s>=999.34 (simple rounding; once again I rounded up b/c rounding down would slightly bring the total earnings to less than the goal)
<u>Therefore, the salesperson would need his/her sales to be $999.34 in order for his/her total earnings for the week to be at least $600.10</u> (greater than or equal to $600.10)
<u>Hope this helped!</u>