Answer:
a) x₀ = - 2 m , b) y = 4.47 m
Explanation:
A wave travels in the middle with constant speed, let's use the equation of uniform motion
v = d / t
t = d / v
The distance to the first listeners, see attached
d₁ = x₀-x
t = (x₀ +7) / v
The distance to the second listener
d₂ = x - x₀
t = (+ 3- x₀) / v
As the wave arrives at the same time, we can equal the two equations
(x₀ +7) / v = (3 -x₀) / v
x₀ + 7 = 3 - x₀
2 x₀ = 3 - 7
x₀ = -4/2
x₀ = - 2 m
b) The time it takes for the wave to reach the listeners of the x-axis, where the speed of sound is 340 m / s
t = 5/340
t = 0.0147 s
Let's look for the distance the wave travels for the listener axis and
v = d₃ / t
d₃ = v.t
d₃ = 340 * 0.0147
d₃ = 5 m
For the distance component we use the Pythagorean triangle
d₃² = x₀² + y²
y² = d₃² - x₀²
y = √ (d₃² -4)
y = √ (5² -4)
y = 4.47 m
Answerana alyom kint gahda amshi
Explanation:
Explanation :
(1) Involuntary muscles are the muscles that are not controlled by our will.
(2) Tendons are the connective tissues that join the muscle to bones. Tendons are tissues that have fibers.
(3) Cardiac muscle is also involuntary muscles. For example heart muscle. It shows contraction and relaxation throughout life.
(4) Voluntary muscle is the muscles that are not controlled by our will.
(5) Biceps are the arm muscles.
Hence, this the required explanation as per options.
Answer:
a. P = nRTV
Explanation:
The question is incomplete. Here is the complete question.
"All of the following equations are statements of the ideal gas law except a. P = nRTV b. PV/T = nR c. P/n = RT/v d. R = PV/nT"
Ideal gas equation is an equation that describes the nature of an ideal gas. The molecule of an ideal gas moves at a particular velocity depending on the temperature. This gases collides with one another elastically. The collision that an ideal gas experience is a perfectly elastic collision.
The ideal gas equation is expressed as shown:
PV = nRT where:
P is the pressure of the gas
V is the volume
n is the number of moles
R is the ideal gas constant
T is the temperature.
Based on the formula given for an ideal gas, it can be inferred that the equation. P = nRTV is not a statement of an ideal gas equation.
The remaining option will results to an ideal gas equation if they are cross multipled.