1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
2 years ago
8

In an effort to protect a rhino, volunteers are following its steps with air monitoring and ground cameras. The rhino starts on

day 1 from ground camera A and walks for 1.5 km west along a straight line as seen from the air. The rhino then moves 0.7 km on a straight line in a direction of 15o east of north toward ground camera B. In this location the rhino may find water and food, therefore the animal stays for the night. On the second day, the rhino moves 2.5 km directly south as recorded from the air by the volunteers. In these two days of tracking how far and in which direction does the rhino travel from camera A?
Physics
1 answer:
finlep [7]2 years ago
6 0

Answer:

Explanation:

We shall represent each displacement by vectors . i will represent east , -i west , j north and - j south .

Rhino walks 1.5 km west on day 1.

D₁ = - 1.5 i

The rhino then moves 0.7 km on a straight line in a direction of 15o east of north toward ground camera B

D₂ = .7 sin15 i + .7cos15 j

On the second day, the rhino moves 2.5 km directly south

D₃ = - 2.5 j

D = D₁ + D₂ + D₃

= - 1.5 i + .7 sin15 i + .7cos15 j - 2.5 j

= - 1.5 i + .181 i + .676 j - 2.5 j

= - 1.32 i - 1.824 j

magnitude  of total displacement

= √ (1.32² +1.824²

= 2.25 km

For direction we shall calculate slope with x axis

Tanθ = - 1.824 / - 1.32

= 54°

So rhino will be towards 54° south of west as both x and y coordinates are negative.

You might be interested in
Matthew throws a ball straight up into the air. It rises for a period of time and then begins to drop. At which points in the ba
MakcuM [25]
At the very top of the peak and on the way down
7 0
3 years ago
Read 2 more answers
What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 85.0% absorbed, puts 470 J of energy
Advocard [28]

Answer:

26036485.6433 W/m²

Explanation:

E= Energy = 470 J

t = Time = 4 seconds

d = Diameter = 2.6 mm

Power is given by

P=\dfrac{E}{t}

Intensity is given by

I=\dfrac{P}{\pi r^2}\\\Rightarrow 0.85I=\dfrac{E}{t\dfrac{\pi}{4} d^2}\\\Rightarrow I=\dfrac{470}{0.85\times 4\times \dfrac{\pi}{4}\times (2.6\times 10^{-3})^2}\\\Rightarrow I=26036485.6433\ W/m^2

The intensity of the laser beam is 26036485.6433 W/m²

8 0
3 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
1. Which of the following is correct about the sampling distribution of the sample mean
joja [24]

Answer:

In my opinion I think that the answer is C sorry If I get this wrong.

5 0
3 years ago
A steel cable has a cross-sectional area 4.49 × 10^-3 m^2 and is kept under a tension of 2.96 × 10^4 N. The density of steel is
Lemur [1.5K]

Answer:

The transverse wave will travel with a speed of 25.5 m/s along the cable.

Explanation:

let T = 2.96×10^4 N be the tension in in the steel cable, ρ  = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.

then, if V is the volume of the cable:

ρ = m/V

m = ρ×V

but V = A×L , where L is the length of the cable.

m = ρ×(A×L)

m/L = ρ×A

then the speed of the wave in the cable is given by:

v = √(T×L/m)

  = √(T/A×ρ)

  = √[2.96×10^4/(4.49×10^-3×7860)]

  = 25.5 m/s

Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.

7 0
3 years ago
Other questions:
  • Which of the following is an elastic collision?
    14·2 answers
  • From a cliff 37.6 m high. At the level of the sea, a rock sticks out a horizontal distance of 12.12 m. The acceleration of gravi
    12·1 answer
  • A sphere mass m1 and a block of mass m2 are connected by a light cord that passes over a pulley. The radius of the pulley is R,
    12·1 answer
  • Which type of light energy found in solar radiation is most likely to reach earth's surface?
    6·2 answers
  • What is the internal resistance of an automobile battery that has an emf of 12.0 V and a terminal voltage of 18.4 V while a curr
    14·1 answer
  • A student is flying west on a school trip from Winnipeg to Calgary in a jet that has an air velocity of 792 km/h.The direction t
    5·1 answer
  • What is the name of NASA's special plane?
    14·1 answer
  • A baseball (A, weight 0.33 lb) moves horizontally at 20 ft/s when it strikes a stationary block (B, weight 10 lb), supported by
    12·1 answer
  • By what factor would your weight increase if you could stand on the sun? (never mind that you can't.)
    9·1 answer
  • Lava from a volcano becomes solid as a result of
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!