1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikklg [1K]
3 years ago
5

In free fall the object with less air resistance falls with a greater acceleration

Physics
1 answer:
ANEK [815]3 years ago
5 0

terminal velocity ... greater speed ... acc is 10m/s/s

You might be interested in
A moving car skids to a stop with the wheels locked across a level roadway. Of the forces listed, identify which act on the car.
Vesnalui [34]

Answer:

Normal, Gravity, Friction, and Air Resistance.

Explanation:

When a moving car skid to stop and its wheels are locked across, then the following forces will be applied on the car:

<u>Normal force:</u> It will act counter to gravity that pushes an object against a surface and acts perpendicular to the contact surface.

<u>Gravity:</u> Gravity force acts in each and every object having mass and it can not be avoidable. So, the gravity force will also apply to the car and attract it to the earth's surface.

<u>Friction: </u>Friction is a force that acts opposite to the motion and stops or slows motion. Friction will be applied to the car that will oppose the motion of the car and stop it.

<u>Air resistance:</u> air resistance is defined as the forces exerted by air that acts opposite to the relative motion of an object. Air resistance will also be applied to the car when it will skid to stop as we are always surrounded by the air.

Hence, the correct answers are "Normal, Gravity, Friction, and Air Resistance."

4 0
3 years ago
A place where things are baked <br>​
slava [35]
“A place where things are baked”

- the bakery?
4 0
2 years ago
The rate at which an object’s velocity changes is called its
topjm [15]
I believe it is call “Acceleration”
6 0
3 years ago
Read 2 more answers
In 1999, Robbie Knievel was the first to jump the Grand Canyon on a motorcycle. At a narrow part of the canyon (65 m wide) and t
vfiekz [6]

Answer:

His launching angle was 14.72°

Explanation:

Please, see the figure for a graphic representation of the problem.

In a parabolic movement, the velocity and displacement vectors are two-component vectors because the object moves along the horizontal and vertical axis.

The horizontal component of the velocity is constant, while the vertical component has a negative acceleration due to gravity. Then, the velocity can be written as follows:

v = (vx, vy)

where vx is the component of v in the horizontal and vy is the component of v in the vertical.

In terms of the launch angle, each component of the initial velocity can be written using the trigonometric rules of a right triangle (see attached figure):

sin angle = opposite / hypotenuse

cos angle = adjacent / hypotenuse

In our case, the side opposite the angle is the module of v0y and the side adjacent to the angle is the module of vx. The hypotenuse is the module of the initial velocity (v0). Then:

sin angle = v0y / v0  then: v0y = v0 * sin angle

In the same way for vx:

vx = v0 * cos angle

Using the equation for velocity in the x-axis we can find the equation for the horizontal position:

dx / dt = v0 * cos angle

dx = (v0 * cos angle) dt (integrating from initial position, x0, to position at time t and from t = 0 and t = t)

x - x0 = v0 t cos angle

x = x0 + v0 t cos angle

For the displacement in the y-axis, the velocity is not constant because the acceleration of the gravity:

dvy / dt = g ( separating variables and integrating from v0y and vy and from t = 0 and t)

vy -v0y = g t

vy = v0y + g t

vy = v0 * sin angle + g t

The position will be:

dy/dt = v0 * sin angle + g t

dy = v0 sin angle dt + g t dt (integrating from y = y0 and y and from t = 0 and t)

y = y0 + v0 t sin angle + 1/2 g t²

The displacement vector at a time "t" will be:

r = (x0 + v0 t cos angle, y0 + v0 t sin angle + 1/2 g t²)

If the launching and landing positions are at the same height, then the displacement vector, when the object lands, will be (see figure)

r = (x0 + v0 t cos angle, 0)

The module of this vector will be the the total displacement (65 m)

module of r = \sqrt{(x0 + v0* t* cos angle)^{2} }  

65 m = x0 + v0 t cos angle ( x0 = 0)

65 m / v0 cos angle = t

Then, using the equation for the position in the y-axis:

y = y0 + v0 t sin angle + 1/2 g t²

0 =  y0 + v0 t sin angle + 1/2 g t²

replacing t =  65 m / v0 cos angle and y0 = 0

0 = 65m (v0 sin angle / v0 cos angle) + 1/2 g (65m / v0 cos angle)²  

cancelating v0:

0 = 65m (sin angle / cos angle) + 1/2 g * (65m)² / (v0² cos² angle)

-65m (sin angle / cos angle) = 1/2 g * (65m)² / (v0² cos² angle)  

using g = -9.8 m/s²

-(sin angle / cos angle) * (cos² angle) = -318.5 m²/ s² / v0²

sin angle * cos angle = 318.5 m²/ s² / (36 m/s)²

(using trigonometric identity: sin x cos x = sin (2x) / 2

sin (2* angle) /2 = 0.25

sin (2* angle) = 0.49

2 * angle = 29.44

<u>angle = 14.72°</u>

3 0
3 years ago
A wheel in the shape of a flat, heavy, uniform, solid disk is initially at rest at the top of an inclined plane of height 2.00 m
olasank [31]

Answer:

Explanation:

If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.

mgh = ½mv²

v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s

However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy

mgh = ½mv² + ½Iω²

mgh = ½mv² + ½(½mR²)(v/R)²

2gh = v² + ½v²

2gh = 3v²/2

v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s

7 0
2 years ago
Other questions:
  • How is earth outer layer different from a cracked hard-boiled egg?
    11·1 answer
  • What trends were seen in Mendeleev’s periodic table?
    5·2 answers
  • Describe the total momentum of billiard balls before and after the cue ball collides with another ball.
    10·2 answers
  • If you go back in time to kill your grandfather, you would pop out of existence, but if you pop out of existence your grandfathe
    10·2 answers
  • When a 0.622 kg basketball hits the floor, its velocity changes from 4.23 m/s down to 3.85 m/s up. If the ball was in contact wi
    10·1 answer
  • What type of weather do cirrus clouds indicate? Snow Fair weather Rain Hail
    9·2 answers
  • What could we call the<br> grocery store?<br> A. Linear motion<br> B. Reference point<br> C. Rotary
    8·1 answer
  • Find the acceleration if a 32.5 N force is<br> used on an object that has a mass of<br> 128.6 kg.
    10·1 answer
  • A passenger on a jet airplane claims to be able to walk at a speed in excess of 500 mph. Can this be true?
    5·1 answer
  • a sports car accelerates from a standing start to 65 mi\h in 4.61s how far can it travel in that time
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!