I would say d but I’m not sure
Explanation:
The structure of Ferrarrisite Ca5(HAs O4)2(AsO4)2
Answer:
0.808 M
Explanation:
Using Raoult's Law

where:
= vapor pressure of sea water( solution) = 23.09 mmHg
= vapor pressure of pure water (solute) = 23.76 mmHg
= mole fraction of water
∴






------ equation (1)
------ equation (2)
where;
number of moles of sea water
number of moles of pure water
equating above equation 1 and 2; we have :



NOW, Molarity = 



As we assume that the sea water contains only NaCl, if NaCl dissociates to Na⁺ and Cl⁻; we have 
Answer:
- The abundance of 107Ag is 51.5%.
- The abundance of 109Ag is 48.5%.
Explanation:
The <em>average atomic mass</em> of silver can be expressed as:
107.87 = 106.90 * A1 + 108.90 * A2
Where A1 is the abundance of 107Ag and A2 of 109Ag.
Assuming those two isotopes are the only one stables, we can use the equation:
A1 + A2 = 1.0
So now we have a system of two equations with two unknowns, and what's left is algebra.
First we<u> use the second equation to express A1 in terms of A2</u>:
A1 = 1.0 - A2
We <u>replace A1 in the first equation</u>:
107.87 = 106.90 * A1 + 108.90 * A2
107.87 = 106.90 * (1.0-A2) + 108.90 * A2
107.87 = 106.90 - 106.90*A2 + 108.90*A2
107.87 = 106.90 + 2*A2
2*A2 = 0.97
A2 = 0.485
So the abundance of 109Ag is (0.485*100%) 48.5%.
We <u>use the value of A2 to calculate A1 in the second equation</u>:
A1 + A2 = 1.0
A1 + 0.485 = 1.0
A1 = 0.515
So the abundance of 107Ag is 51.5%.