The process through which Polonium is most likely to become stable is: B. alpha decay.
An unstable element refers to a chemical element that lose particles because its nucleus contain an excess of internal energy (neutron or proton).
This ultimately implies that, an unstable element is radioactive in nature.
In Science, some examples of an unstable element are:
Polonium is a chemical element with a large, unstable nucleus.
Basically, the most stable isotope of Polonium is Polonium-209, which typically undergoes an alpha decay to form lead-205 and the emission of an alpha particle.
⇒
----> 
In conclusion, we can deduce from the above chemical equation that Polonium is most likely to become stable through an alpha decay.
Read more: brainly.com/question/18214726
Explanation:
The given data is as follows.
Pressure (P) = 760 torr = 1 atm
Volume (V) =
= 0.720 L
Temperature (T) =
= (25 + 273) K = 298 K
Using ideal gas equation, we will calculate the number of moles as follows.
PV = nRT
Total atoms present (n) =
=
= 0.0294 mol
Let us assume that there are x mol of Ar and y mol of Xe.
Hence, total number of moles will be as follows.
x + y = 0.0294
Also, 40x + 131y = 2.966
x = 0.0097 mol
y = (0.0294 - 0.0097)
= 0.0197 mol
Therefore, mole fraction will be calculated as follows.
Mol fraction of Xe =
= 
= 0.67
Therefore, the mole fraction of Xe is 0.67.
Answer:
New experimental methods
Technological inventions
Explanation:
A scientific theory is usually not based on speculation. Scientific theories must have a solid empirical basis.
However, experimental methods are limited to the caliber of equipments available at the time in which a theory is formulated. With advancing years, more technological sophistication leads to the invention of new instruments and ultimately, the development of new experimental methods.
These innovations are likely to alter existing scientific theories as new evidences emerge, hence the answer.
Answer:
the answer is water
Explanation:
During photosynthesis, plants take in carbon dioxide (CO2) and water (H2O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose.
Answer:
50 g of K₂CO₃ are needed
Explanation:
How many grams of K₂CO₃ are needed to make 500 g of a 10% m/m solution?
We analyse data:
500 g is the mass of the solution we want
10% m/m is a sort of concentration, in this case means that 10 g of solute (K₂CO₃) are contained in 100 g of solution
Therefore we can solve this, by a rule of three:
In 100 g of solution we have 10 g of K₂CO₃
In 500 g of solution we may have, (500 . 10) / 100 = 50 g of K₂CO₃