Answer:
If the temperature was increased to 404 K, its volume would be 3.68 L.
Explanation:
Charles' Law gives a relationship between the volume and the temperature of the gas at constant temperature. This law states that the volume of a given amount of gas held at constant pressure is directly proportional to the temperature.


Let

Let
is new volume. Using above formula we get :

If the temperature was increased to 404 K, its volume would be 3.68 L.
Answer:
Hi
Each electron in an atom is characterized by four numbers that arise from the resolution of Schrödinger's equations. These numbers are called quantum numbers. Each energy level corresponds to a main known quantum number, which is represented by the letter n. This number gives an idea of the location of an energy level with respect to the nucleus. The higher n, the mayor will be the energy of that level and the farther away from the nucleus is removed.
In each energy level there may be sub-levels. Each of them is specified by another quantum number called secondary, specified with the letter l. The value of this quantum number can vary from zero to n-1. For example, in the first energy level, the quantum number can only take a value that is zero, while in the second level, it can take a value between zero or one. Then, it can be said that the values of the quantum number n indicate the size of the orbital, that is, its proximity to the nucleus; and the values of the quantum number l variables the orbital:
• If l = 0, the orbital is of type s.
• If l = 1, the orbitals are of type p.
• If l = 2, the orbitals are of type d.
• If l = 3, the orbitals are of type f.
Explanation:
Answer:
1.60.
Explanation:
- The no. of millimoles of HCl = MV = (0.15 M)(20.0 mL) = 3.0 mmol.
- The no. of millimoles of KOH = MV = (0.10 M)(20.0 mL) = 2.0 mmol.
<em>Since the no. of millimoles of HCl is larger than that of KOH. The solution is acidic.</em>
<em></em>
∴ M of remaining HCl [H⁺] remaining = (NV)HCl - (NV)KOH/V total = (3.0 mmol) - (2.0 mmol) / (40.0 mL) = 0.025 M.
∵ pH = - log[H⁺]
<em>∴ pH = - log[H⁺] </em>= - log(0.025) = <em>1.602 ≅ 1.60.</em>
Answer:
A suitable scale, say 1 cm: 100 km can be used.
Explanation:
Thinking process:
The best way to approach the question will be to consider the requirements. This is a simple case of scaling. In order to achieve the objective, you need to choose a scale that does not consume space and that presents more details at the same time.
For instance, a scale of 1 cm to 100 km will give me lines which are a little more then 5 cm. This can be presented as:
1: 500
This is appreciable for the paper size.

so:



so:

it means that
in

of acid there is

moles of acid

so:

it means that:
in

of water there is

moles of water
therefore:

So your answers are:

and the mole fraction is: