If we take the square of x and square of y and then subtract them:
(csc t)²-(cot t)²=1 ( this eq. gets from basic identity
x²-y²=1......a 1+cot²x=csc²x)
equation 'a' represent the equation of hyperbola which is (x²/a²)-(y²/b²) =1 with given conditions( a=1,b=1)
So, option D is correct
3:2
for every 3 ounces of flour, you need 2 ounces of sugar
Here is our profit as a function of # of posters
p(x) =-10x² + 200x - 250
Here is our price per poster, as a function of the # of posters:
pr(x) = 20 - x
Since we want to find the optimum price and # of posters, let's plug our price function into our profit function, to find the optimum x, and then use that to find the optimum price:
p(x) = -10 (20-x)² + 200 (20 - x) - 250
p(x) = -10 (400 -40x + x²) + 4000 - 200x - 250
Take a look at our profit function. It is a normal trinomial square, with a negative sign on the squared term. This means the curve is a downward facing parabola, so our profit maximum will be the top of the curve.
By taking the derivative, we can find where p'(x) = 0 (where the slope of p(x) equals 0), to see where the top of profit function is.
p(x) = -4000 +400x -10x² + 4000 -200x -250
p'(x) = 400 - 20x -200
0 = 200 - 20x
20x = 200
x = 10
p'(x) = 0 at x=10. This is the peak of our profit function. To find the price per poster, plug x=10 into our price function:
price = 20 - x
price = 10
Now plug x=10 into our original profit function in order to find our maximum profit:
<span>p(x)= -10x^2 +200x -250
p(x) = -10 (10)</span>² +200 (10) - 250
<span>p(x) = -1000 + 2000 - 250
p(x) = 750
Correct answer is C)</span>
Answer:
A
Step-by-step explanation:
Distance between 2 points

☆ (x₁, y₁) is the first coordinate while (x₂, y₂) I'd the second coordinate.
Length of RS
![= \sqrt{ {[ - 1 -( - 4)] }^{2} + (9 - 1)^{2} } \\ = \sqrt{( - 1 + 4)^{2} + 8^{2} } \\ = \sqrt{ {3}^{2} + 64 } \\ = \sqrt{73} \\ = 8.54 \: (3 \: s.f.)](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%7B%20%7B%5B%20-%201%20-%28%20-%204%29%5D%20%7D%5E%7B2%7D%20%20%2B%20%289%20-%201%29%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B%28%20-%201%20%2B%204%29%5E%7B2%7D%20%20%2B%208%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B%20%7B3%7D%5E%7B2%7D%20%20%2B%2064%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B73%7D%20%20%5C%5C%20%3D%208.54%20%5C%3A%20%283%20%5C%3A%20s.f.%29)
Thus, RS is about 8.5 units.
function composition is an operation that takes two functions f and g and produces a function h such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x.