But what is the width of the molecule
M = amount of the solute / mass of the <span>solvent
0.523 = x / 2.00
x = 0.523 * 2.00
x = 1,046 moles
molar mass KI = </span><span>166.0028 g/mol
</span><span>
Mass = 1,046 * 166.0028
Mass </span>≈<span> 173.63 g
hope this helps!
</span>
Answer:
Chemical reaction.
Step-by-step explanation:
In the experiment, a catalyst is added to concentrated hydrogen peroxide.
The hydrogen peroxide <em>decomposes</em> rapidly, according to the equation
2H₂O₂(ℓ) ⟶ 2H₂O(ℓ) + O₂(g)
New substances are formed, and old ones disappear, so this is a chemical reaction.
The reaction also releases a <em>large amount of heat</em>.
The rapidly-expanding oxygen gas caries with it droplets of water and hydrogen peroxide (and probably some steam, as well).
The visual effect is like a genie escaping from its bottl<em>e</em>.
Cm^3=1cm*1cm*1cm
=10mm*10mm*10mm
=1000 mm^3
Given :
Number of molecules of hydrogen peroxide, N = 4.5 × 10²².
To Find :
The mass of given molecules of hydrogen peroxide.
Solution :
We know, 1 mole of every compound contains Nₐ = 6.022 × 10²³ molecules.
So, number of moles of hydrogen peroxide is :

Now, mass of hydrogen peroxide is given as :
m = n × M.M
m = 0.0747 × 34 grams
m = 2.54 grams
Hence, this is the required solution.