The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
There are 207405.111 grams in that many pounds.
Answer:
Option B. Both have a pH less than 7, but H3PO4 has a lower pH than HCl
Explanation:
Those are acid, so the pH would be < 7.
H₃PO₄ is a weak acid with 3 dissociations
HCl is a strong acid.
pH depends on [H]⁺
H₃PO₄ → 3H⁺ + PO₄⁻³
HCl → H⁺ + Cl⁻
If both acid, have the same concentration, [H⁺]H₃PO₄ > [H⁺]HCl, that's why the pH from the phosphoric will be lower.
There are 2 moles in 8 grams