1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
3 years ago
15

State the four advantages of levers

Engineering
1 answer:
dezoksy [38]3 years ago
3 0

Answer:

Here are 2 sense i cant find 4

Explanation:

Levers are used to multiply force, In other words, using a lever gives you greater force or power than the effort you put in.

In a lever, if the distance from the effort to the fulcrum is longer than the distance from the load to the fulcrum, this gives a greater mechanical advantage.

You might be interested in
If the efficiency of the boiler is 91.2 % , the overall efficiency of the turbine, which includes the Carnot efficiency and its
Tju [1.3M]

Answer:

Net efficiency of generating unit = 42.08 - 5 = 37.08 %

Explanation:

We have given that efficiency of the boiler = 91.2 % = 0.912

Carnot efficiency = 46.9 % = 0.469

Efficiency of generator = 98.4% =0.984

We have to find the efficiency of total generating unit

For finding the efficiency of total generating unit we have to multiply all the efficiencies

So efficiency of generating unit = 0.912×0.469×0.984 = 0.4208 = 42.08 %

For plant losses we have to subtract 5%

So net efficiency of generating unit = 42.08 - 5 = 37.08 %

4 0
4 years ago
How can input from multiple individuals improve design solutions for problems that occur because of a natural disaster, such as
Alla [95]

Answer:

Map and avoid high-risk zones.

Build hazard-resistant structures and houses.

Protect and develop hazard buffers (forests, reefs, etc.)

Develop culture of prevention and resilience.

Improve early warning and response systems.

Build institutions, and development policies and plans.

Explanation:

5 0
3 years ago
A double-pane insulated window consists of two 1 cm thick pieces of glass separated by a 1.8 cm layer of air. The window measure
Elanso [62]

Answer:

(b). T = 22.55 ⁰C

(c). q = 557.8 W

Explanation:

we take follow a step by step process to solving this problem.

from the question, we have that

The two glass pieces is separated by a 1.8 cm distance layer of air.

the thickness of glass piece is 1 cm

width = 4 m

the height = 3 m

(a). the sketch of the thermal circuit is uploaded in the picture below.

(b).  the thermal resistance due to the conduction in the first glass plane is given thus;

R₁ = Lg / Kg A ................(1)

given that Kg rep. the thermal conductivity of the glass plane

A = conduction surface area

Lg = Thickness of glass plane4

taking the thermal conductivity of glass plane as Kg = 0.78 w/mk

inputting values into equation (1) we have,

R₁ = [1 (cm) ˣ 1 (m)/100 (cm)] / [(0.78 w/mk)(4m ˣ 3m)]

R₁ = 1.068 ˣ 10 ⁻³ k/w

Being that we have same thermal resistance in the first and second plane,

therefore R₁ = R₃ = 1.068 ˣ 10 ⁻³ k/w

⇒ Also the thermal resistance between air and glass as a result of the conduction by the layer is given thus

R₂ = La/KaA .....................(2)

given Ka = thermal conductivity of air

A = surface area

La = thickness of air

substituting values into the equation we have

R₂ = [1.8 (cm) ˣ 1 (m)/100 (cm)] / [(0.0262 w/mk)(4m ˣ 3m)]

R₂ = 5.73 ˣ 10⁻² k/w

Given the thermal resistance on the outer surface due to convection, we have

R₄ = 1/hA

inputting value gives R₄ = 1 / (12 w/m² ˣ 12m) = 6.94 ˣ 10⁻³k/w

R₄ = 6.94 ˣ 10⁻³k/w

Finally the sum total of thermal resistance = R₁ + R₂ + R₃ + R₄

R-total = 0.0663 kw

From this we can calculate the rate of heat loss

using  q = Ti - To / R-total ..............(3)

given Ti and To is the inside and outside temperature i.e. 27⁰C and -10⁰C

from equation (3),

q = 27- (-10) / 0.0063 = 557.8 W

q = 557.8 W  

⇒ Applying the heat transfer formula for inside surface glass temperature gives;

q = Ti - T₂ / R₃ + R₄

T₂ = Ti - q (R₃ + R₄)

T₂ = 27 - 557.8 (1.068ˣ10⁻³ + 6.94ˣ10⁻³ ) = 22.55°C

T₂ = 22.55°C

cheers i hope this helps

8 0
3 years ago
In a steady flow device, the properties of the system remains constant with time. a)True b) False
Leviafan [203]

Answer:

True

Explanation:

By definition of steady flow we have

\frac{\partial f(x,y,z,t) }{\partial t}=0

where f(x,y,z,t) is any property of the system under consideration

=> f(x,y,z,t) = constant

7 0
3 years ago
The air in a room has a pressure of 1 atm, a dry-bulb temperature of 24C, and a wet-bulb temperature of 17C. Using the psychrome
TEA [102]

Answer:

(a) Relative Humidity = 48%,

Specific humidity = 0.0095

(b) Enthalpy = 65 KJ/Kg of dry sir

Specific volume = 0.86 m^3/Kg of dry air

(c/d) 12.78 degree C

(e) Specific volume = 0.86 m^3/Kg of dry air

8 0
3 years ago
Other questions:
  • Which solution causes cells to shrink
    13·1 answer
  • Refrigerant-134a enters a diffuser steadily as saturated vapor at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa a
    10·2 answers
  • A structural component in the shape of a flat plate 29.6 mm thick is to be fabricated from a metal alloy for which the yield str
    11·1 answer
  • Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a velocity of 25 m/s. At the exit, the
    11·1 answer
  • 1. Given: R= 25 , E = 100 V<br> Solve for I
    5·1 answer
  • Convert.46 to a percentage
    7·1 answer
  • Pls help me with these 3 ez questions.
    8·2 answers
  • Technician A states that a scan tool can read
    13·1 answer
  • What is another term for the notes that a reader can add to text in a word-processing document?
    11·2 answers
  • To meet the needs of a client, what is best for an interior designer to do?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!