Answer:
The correct answer is option 'B': Load is far from fulcrum and the effort is applied near the fulcrum
Explanation:
A lever works on the principle of balancing of torques. The torque about the fulcrum by the load should be equal to the torque by the applied effort. Since we know that the torque is proportional to both the force and the distance it is applied from the distance from the axis of rotation. A lever is used when we need to lift a heavy load by utilizing this effect of the lever arm.
A mechanical disadvantage occurs when we are not able to lift the weight easily due to the fact we apply effort near the fulcrum.
Maximum shear stress in the pole is 0.
<u>Explanation:</u>
Given-
Outer diameter = 127 mm
Outer radius,
= 127/2 = 63.5 mm
Inner diameter = 115 mm
Inner radius,
= 115/2 = 57.5 mm
Force, q = 0
Maximum shear stress, τmax = ?
τmax 
If force, q is 0 then τmax is also equal to 0.
Therefore, maximum shear stress in the pole is 0.
Answer:
a) zero b) zero
Explanation:
Newton's first law tells us that a body remains at rest or in uniform rectilinear motion, if a net force is not applied on it, that is, if there are no applied forces or If the sum of forces acting is zero. In this case there is a body that moves with uniform rectilinear motion which implies that there is no net force.
E. Parts they don’t resemble
Answer:

Explanation:
Given
Airline flying at 34,000 ft.
Cabin pressurized to an altitude 8,000 ft.
We know that at standard condition ,density of air

We know that pressure difference
ΔP=ρ g ΔZ
Here ΔZ=34,000-8,000 ft
ΔZ=26,000 ft

ΔP=0.074 x 32.2 x 26,000

So pressure difference will be
.