1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
3 years ago
7

Two identical tiny spheres of mass m =2g and charge q hang from a non-conducting strings, each of length L = 10cm. At equilibriu

m, each string makes and angle θ =50 with the vertical. Find the size of the charge on each spere.

Physics
1 answer:
Citrus2011 [14]3 years ago
8 0

Answer:

0.247 μC

Explanation:

As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:

F_y:  T_y - W = 0\\T_y = m*g = 0.002 kg *9.81m/s^2 = 0.01962 N

T_y = T_*cos(50)\\T = \frac{T_y}{cos(50)} = 0.0305 N

T_x = T*sin(50) = 0.0234 N

The electric force is given by the expression:

F = k*\frac{q_1*q_2}{r^2}

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

r = 2*L*sin(50) = 2 * 0.1m * sin(50) 0.1532 m

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.

F_x = T_x - F_e = 0\\T_x = F_e = k*\frac{q^2}{r^2}

q = \sqrt{T_x *\frac{r^2}{k}} = \sqrt{0.0234 N * \frac{(0.1532m)^2}{9*10^9 N*m^2/C^2} } = 2.4704 * 10^-7 C

O 0.247 μC

You might be interested in
A rigid container holds 0.30g of hydrogen gas.
Strike441 [17]

Answer:

Part A:    \mathbf{Q =94 \ J} to two significant figures

Part B:    \mathbf{Q =160  \ J} to two significant figures

Part C:    \mathbf{Q =220  \ J} to two significant figures

Explanation:

Given that :

mass of the hydrogen = 0.30 g

the molar mass of hydrogen gas molecule = 2 g/mol

we all know that:

number of moles = mass/molar mass

number of moles = 0.30 g /2 g/mol

number of moles = 0.15 mol

For low temperature between the range of 50 K to 100 K, the specific heat at constant volume for a diatomic gas molecule = C_v=\dfrac{3}{2}R

For Part A:

Q = mC_v\Delta T

Q= 0.15 \ mol (\dfrac{3}{2})(8.314 \ J/mole.K )(100-50)K

Q= 0.15 \times (\dfrac{3}{2}) \times (8.314 \ J )\times (50)

Q=93.5325 \ J

\mathbf{Q =94 \ J} to two significant figures

Part B. For hot temperature, C_v=\dfrac{5}{2}R

Q = mC_v\Delta T

Q= 0.15 \ mol (\dfrac{5}{2})(8.314 \ J/mole.K )(300-250)K

Q= 0.15 \times (\dfrac{5}{2}) \times (8.314 \ J )\times (50)

Q=155.8875 \ J

\mathbf{Q =160  \ J} to two significant figures

Part C. For an extremely hot temperature, C_v=\dfrac{7}{2}R

Q = mC_v\Delta T

Q= 0.15 \ mol (\dfrac{7}{2})(8.314 \ J/mole.K )(2300-2250)K

Q= 0.15 \times (\dfrac{7}{2}) \times (8.314 \ J )\times (50)

Q=218.2425 \ J

\mathbf{Q =220  \ J} to two significant figures

6 0
3 years ago
Grocery store managers contend that there is less total energy consumption in the summer if the store is kept at a low temperatu
butalik [34]

Answer:

Argument in favor of less total energy consumption if the store is kept at a low temperature

Explanation:

Have in mind that if the store has numerous refrigerators and freezers, the energy consumption of those machines have to be included into the analysis.

Recall that the efficiency (or Coefficient Of Performance - COP) of a frezzer or refrigerator is inversely proportional to the temperature difference between the inside of th machine and the environment where it is operation, therefore the smaller the difference, the highest their efficiency. Therefore, the cooler the environment (the temperature at which the store is kept) the better performance of the running refrigerators and freezers.

4 0
3 years ago
Type of current moving one way
Alla [95]
A direct current
this is a current that only flows in one direction
8 0
3 years ago
Describe how radio waves are different from sound waves.
Lilit [14]

Answer:

sound and radio waves are completely different phenomena.

Explanation:

7 0
2 years ago
Read 2 more answers
Could anyone help me out ?
Delicious77 [7]

density = mass/volume = 100kg/10ml = 10kg/ml

voluime = mass/density = 50g/2 g/ml = 25 ml

mass = density x volume = 2x55 = 110 kg

4 0
3 years ago
Read 2 more answers
Other questions:
  • What observations characterize solar maximum?
    10·1 answer
  • Which object absorbs the most visible light?
    10·2 answers
  • The space shuttle fleet was designed with two booster stages. if the first stage provides a thrust of 53 kilo-newtons and the sp
    6·1 answer
  • A skateboarder rolls off a ledge that is 1.12 m high, and lands 1.48 m from the base of the edge. How much time was he in the ai
    12·1 answer
  • A dog walks a distance of 55.5 meters in 120 seconds. What was its speed?
    11·1 answer
  • In an inelastic collision, a steel ball of mass 200 g was hit hard into a large ball of dough of mass 700 g. The velocity of the
    6·1 answer
  • Which event best helped becquerel determine uranium radiate rays?
    13·1 answer
  • 9) Cart 1 has a mass of 4 kg and an initial speed of 4 m/s. It eventually elastically collides with cart 2, whose mass is 6 kg,
    9·1 answer
  • ASAP!! Please help me out here ​
    14·1 answer
  • Which of the following is a device
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!