"Frequency" means how often something happens. When you say how many times it happens every SECOND, you can call the number Hertz, or Hz.
In the graph, there are 10 vibrations in 10 seconds, 20 of them in 20 seconds, and 30 in 30 seconds. This should pretty much shout at you "THERE'S ONE VIBRATION EVERY SECOND !". When you realize that, you can say the frequency of the vibration is 1 Hz.
The graph tells us nothing about the speed of the waves. I suspect there's another picture to the question that you didn't include. If the other part shows the wavelength, then we could figure out the speed. But with just what you're showing us, we can't.
Answer:
Solar Impulse is a Swiss long-range experimental solar-powered aircraft project and Conventional Aircraft are the atmosphere-only aircraft that have been around since the Wright Flyer's first takeoff. Though modern craft are much more advanced and capable than that early model, Conventional Aircraft have been superseded in modern times by the AeroSpace Fighter, which can operate in both atmosphere and space.
Explanation:
Answer:
The time taken for the race is 17.20 s.
Explanation:
It is given in the problem that a 62.0 kg sprinter starts a race with an acceleration of 1.44 meter per second square.The initial speed of the sprinter is zero as it starts from the rest.
Calculate the final speed of the sprinter.
The expression for the equation of the motion is as follows;
Here, u is the initial speed, v is the final speed, a is the acceleration and s is the distance.
Put u= 0, s=30 m and .
Calculate time taken to cover 30 m distance.
The expression for the equation of motion is as follows;
Put u= 0, s=30 m and .
t=6.45 s
Calculate the time taken to complete his race.
T= t+t'
Here, t is the time taken to cover 30 m distance and t' is the time taken to cover 100 m distance.
Put s= 30 m, and s'= 100 m.
T= 17.20 s
Therefore, the time taken for the race is 17.20 s.
It will be 3 wavelengths because 1 cycle = 1 wavelength.
Answer:
y = 17 m
Explanation:
For this projectile launch exercise, let's write the equation of position
x = v₀ₓ t
y = t - ½ g t²
let's substitute
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
the maximum height the ball can reach where the vertical velocity is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
0 = v₀ sin θ - 9.8 t
Let's write our system of equations
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
0 = v₀ sin θ - 9.8 t
We have a system of three equations with three unknowns for which it can be solved.
Let's use the last two
v₀ sin θ = 9.8 t
we substitute
10 = (9.8 t) t - ½ 9.8 t2
10 = ½ 9.8 t2
10 = 4.9 t2
t = √ (10 / 4.9)
t = 1,429 s
Now let's use the first equation and the last one
45 = v₀ cos θ t
0 = v₀ sin θ - 9.8 t
9.8 t = v₀ sin θ
45 / t = v₀ cos θ
we divide
9.8t / (45 / t) = tan θ
tan θ = 9.8 t² / 45
θ = tan⁻¹ ( 9.8 t² / 45
)
θ = tan⁻¹ (0.4447)
θ = 24º
Now we can calculate the maximum height
v_y² = - 2 g y
vy = 0
y = v_{oy}^2 / 2g
y = (20 sin 24)²/2 9.8
y = 3,376 m
the other angle that gives the same result is
θ‘= 90 - θ
θ' = 90 -24
θ'= 66'
for this angle the maximum height is
y = v_{oy}^2 / 2g
y = (20 sin 66)²/2 9.8
y = 17 m
thisis the correct