Answer:
E = 2,575 eV
Explanation:
For this exercise we will use the Planck equation and the relationship of the speed of light with the frequency and wavelength
E = h f
c = λ f
Where the Planck constant has a value of 6.63 10⁻³⁴ J s
Let's replace
E = h c / λ
Let's calculate for wavelengths
λ = 4.83 10-7 m (blue)
E = 6.63 10⁻³⁴ 3 10⁸ / 4.83 10⁻⁷
E = 4.12 10-19 J
The transformation from J to eV is 1 eV = 1.6 10⁻¹⁹ J
E = 4.12 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E = 2,575 eV
Virtual upright and the same size
Halogens<span> are extremely reactive elements because they need one more electron to gain a full octet of valence electrons, whereas the </span>noble gases<span>are extremely unstable because they already have their full octet.</span>
Each energy sublevel corresponds to an orbital of a different shape.
Explanation:
Two sublevels of the same principal energy level differs from each other if the sublevels corrresponds to an orbital of a different shape.
- The principal quantum number of an atom represents the main energy level in which the orbital is located or the distance of an orbital from the nucleus. It takes values of n = 1,2,3,4 et.c
- The secondary quantum number gives the shape of the orbitals in subshells accommodating electrons.
- The number of possible shapes is limited by the principal quantum numbers.
Take for example, Carbon:
1s² 2s² 2p²
The second energy level is 2 but with two different sublevels of s and p. They have different shapes. S is spherical and P is dumb-bell shaped .
Learn more:
Quantum number brainly.com/question/9288609
#learnwithBrainly