Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
Answer:
ans:
tenson(T) = 20 N
acceleration (a) = 2.86 m/s
Explanation:
T + mg = Mg
T = Mg - mg
T = g( M - m )
T = 10× ( 7-5 )
T = 20 N
again;
T = 20
Ma = 20
a = 20 / 7
= 2.86 m/s
Assumes the shape and volume of its container
<span>particles can move past one another</span>
Answer:
2500 J
Explanation:
We can solve the problem by using the first law of thermodynamics:

where
Uf is the final internal energy of the system
Ui is the initial internal energy
Q is the heat added to the system
W is the work done by the system
In this problem, we have:
Q = +1000 J (heat that enters the system)
W = +500 J (work done by the system)
Ui = 2000 J (initial internal energy)
Using these numbers, we can re-arrange the equation to calculate the final internal energy:

Answer:
How long will it take to travel a distance of 96 km? Givens. Solving For ... An object accelerates 3.0 m/s2 when a force of 6.0 Newtons is applied to it.
Explanation: