Answer:
74.0 g/mol
Explanation:
Step 1: Write the generic neutralization reaction
HA + NaOH ⇒ NaA + H₂O
Step 2: Calculate the reacting moles of NaOH
At the equivalence point, 33.83 mL of 0.115 M NaOH react.
0.03383 L × 0.115 mol/L = 3.89 × 10⁻³ mol
Step 3: Calculate the moles of HA that completely react with 3.89 × 10⁻³ moles of NaOH
The molar ratio of HA to NaOH is 1:1. The reacting moles of HA is 1/1 × 3.89 × 10⁻³ mol = 3.89 × 10⁻³ mol.
Step 4: Calculate the molar mass of the acid
3.89 × 10⁻³ moles of HA have a mass of 0.288 g.
M = 0.288 g / 3.89 × 10⁻³ mol = 74.0 g/mol
In an endothermic reaction products are <u>HIGHER </u>than reactants in potential energy and <u>LESS </u>stable.
Explanation:
Energy is input into the reaction in an endothermic reaction. This means the products are of a higher energy level than the reactants. Therefore the reaction increases Gibb's free energy and reduces entropy. Remember in thermodynamic stability involves an increase in entropy and a decrease in Gibbs free energy. Therefore the products are less stable than the reactants. This is why endothermic reactions do not occur spontaneously like exothermic reactions.
Answer:
All atoms of the same element have always have the same amount of protons.
Explanation:
Atoms of the same element have always have the same amount of protons but not always the same electrons and neutrons. If an atom gains or loses one of its valance electrons, the electrons on the outermost shell, then it becomes ionized. Also not all atoms of the same element have the same amount of neutron. This is called an isotope. A good example would be Carbon 13. Normally, Carbon atoms have an atomic mass of 12 AMU or 12 atomic mass units. However, Carbon atoms have an atomic mass of 13 AMU, consisting of 7 neutrons instead of 6 neutrons. So the only thing that all atoms of the same element have in common is the amount of protons.
Answer:
- <em>The solution expected to contain the greatest number of solute particles is: </em><u>A) 1 L of 1.0 M NaCl</u>
Explanation:
The number of particles is calculated as:
a) <u>For Ionic compounds</u>:
- molarity × volume in liters × number of ions per unit formula.
b) <u>For covalent compounds</u>:
- molarity × volume in liters
The difference is a factor which is the number of particles resulting from the dissociation or ionization of one mole of the ionic compound.
So, calling M the molarity, you can write:
- # of particles = M × liters × factor
This table show the calculations for the four solutions from the list of choices:
Compound kind Particles in solution Molarity # of particles
(dissociation) (M) in 1 liter
A) NaCl ionic ions Na⁺ and Cl⁻ 1.0 1.0 × 1 × 2 = 2
B) NaCl ionic ions Na⁺ anc Cl⁻ 0.5 0.5 × 1 × 2 = 1
C) Glucose covalent molecules 0.5 0.5 × 1 × 1 = 0.5
D) Glucose covalent molecules 1.0 1.0 × 1 × 1 = 1
Therefore, the rank in increasing number of particles is for the list of solutions given is: C < B = D < A, which means that the solution expected to contain the greatest number of solute particles is the solution A) 1 L of 1.0 M NaCl.