Answer:
ω = 0.1 rad/s
v = 0.002 m/s
Explanation:
The angular velcoity of the second hand of the clock can be found by:
ω = θ/t
where,
ω = Angular Speed
θ = Angular Displacement
t = time taken
Now, for one complete revolution of second hand of the clock:
θ = 2π rad
t = 60 s
Therefore,
ω = 2π rad/60 s
<u>ω = 0.1 rad/s</u>
Now, for the linear speed (V):
V = rω
where,
V = Linear Speed of Second Hand = ?
r = radius = length of second hand = 0.02 m
Therefore,
V = (0.02 m)(0.1 rad/s)
<u>V = 0.002 m/s</u>
My answer to this question honestly is no
Answer:
16
Explanation:
If we treat the pot as a black body, then:
q = σ T⁴ A,
where q is the heat per second radiated,
σ is the Stefan-Boltzmann Constant,
T is the absolute temperature,
and A is the surface area.
If the absolute temperature doubles, then q increases by a factor of 2⁴ = 16.