1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valkas [14]
3 years ago
14

If Galileo drops a cannon ball from the 60 meter high) Leaning Tower of Pisa, how fast will it be moving when it hits the ground

?
Physics
1 answer:
viva [34]3 years ago
5 0

Answer:

When the ball hits the ground, the velocity will be -34 m/s.

Explanation:

The height and velocity of the ball at any time can be calculated using the following equations:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the ball at time "t".

y0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity. (-9.8 m/s² considering the upward direction as positive).

v = velocity at time "t".

If we place the origin of the frame of reference on the ground, when the ball hits the ground its height will be 0. Then using the equation of height, we can calculate the time it takes the ball to reach the ground:

y = y0 + v0 · t + 1/2 · g · t²

0 = 60 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²

0 = 60 m - 4.9 m/s² · t²

-60 m / -4.9 m/s² = t²

t = 3.5 s

Now, with this time, we can calculate the velocity of the ball when it reaches the ground:

v = v0 + g · t

v = 0 m/s - 9.8 m/s² · 3.5 s

v = -34 m/s

When the ball hits the ground, the velocity will be -34 m/s.

You might be interested in
a particle is moving along a circular path having a radius of 4 in such that its position as a function of time is given by thet
ANTONII [103]

Answer:

Explanation:

Given

radius of circular path r=4\ in.

Position is given by

\theta =\cos 2t---1

Differentiate 1  to angular velocity we get

\frac{\mathrm{d} \theta }{\mathrm{d} t}=\omega =-2\sin 2t----2

Differentiate 2 to get angular acceleration

\frac{\mathrm{d} \omega }{\mathrm{d} t}=-2^2\cos 2t ---3

Net acceleration is the vector summation of tangential and centripetal force

a_t=\alpha \times r

a_t=-4\cos 2t\times 4=-16\cos 2t

a_r=\omega ^2\cdot r

a_r=(-2\sin 2t)^2\cdot 4

a_r=16\sin^2(2t)

a_{net}=\sqrt{a_r^2+a_t^2}

a_{net}=\sqrt{(16\sin ^2(2t)+(-16\cos 2t)^2}

a_{net}=\sqrt{256\cos ^2(2t)+256\sin ^4(2t)}                                                    

6 0
3 years ago
How much force is required to pull a spring 3.0 cm from
avanturin [10]

Answer:

I know that T= kx where T is the tension which equaka the force og gravity = mg = 1.37 * 10 = 13.7 x is the elongation of the spring so the length after dangling the object minus the original length.

I hope it helps

plz let me know if it is wrong or right.

4 0
4 years ago
The nonreflective coating on a camera lens with an index of refraction of 1.29 is designed to minimize the reflection of 634-nm
eimsori [14]

Answer:

minimum thickness of the coating = 122.868 nm

Explanation:

Given data

lens index of refraction = 1.29

wavelength = 634 nm

glass index of refraction = 1.53

to find out

minimum thickness of the coating

solution

we have given non reflective coating

so

we know that minimum thickness of the coating formula

minimum thickness of the coating = Wavelength / 4n

here n is coating index of refraction

so put here both value to get thickness

minimum thickness of the coating = Wavelength / 4n

minimum thickness of the coating = 634 / 4 ( 1.29 )

so minimum thickness of the coating = 122.868 nm

5 0
3 years ago
A 90 kg man stands in a very strong wind moving at 17 m/s at torso height. As you know, he will need to lean in to the wind, and
victus00 [196]

Answer:

a)  t=195.948N.m

b)  \phi=13.6 \textdegree

Explanation:

From the question we are told that:

Density \rho=1.225kg/m^2

Velocity of wind v=14m/s

Dimension of rectangle:50 cm wide and 90 cm

Drag coefficient \mu=2.05

a)

Generally the equation for Force is mathematically given by

F=\frac{1}{2}\muA\rhov^2

F=\frac{1}{2}2.05(50*90*\frac{1}{10000})*1.225*17^2

F=163.29

Therefore Torque

t=F*r*sin\theta

t=163.29*1.2*sin90

t=195.948N.m

b)

Generally the equation for torque due to weight is mathematically given by

t=d*Mg*sin90

Where

d=sin \phi

Therefore

t=sin \phi*Mg*sin90

195.948=833sin \phi

\phi=sin^{-1}\frac{195.948}{833}

\phi=13.6 \textdegree

5 0
3 years ago
What is mightier than steel yet cowers from the sun?
JulijaS [17]

Ice is only thing which is mightier than steel  because it can breaks things which are made up of steels like ships but in the sunlight ice melts away it means it cowards away.

4 0
4 years ago
Read 2 more answers
Other questions:
  • A scientist compares two samples of colorless gas present at the beginning and end of a lab process. She wants to determine whet
    10·2 answers
  • A neutron star is the remnant left after certain supernovae (explosions of giant stars). Typically, neutron stars are about 18 k
    15·1 answer
  • how much centripetal force is needed to make a body of mass 0.5 kg to move in a circle of radius 50 cm with a speed 3ms-1
    14·2 answers
  • What is the name of alfred wegener's hypothesis about moving land masses?
    12·2 answers
  • Which of the following has potential but not kinetic energy?
    8·1 answer
  • List the three types of symbiotic relationships. For each type of symbiotic relationship, explain how the two organisms are affe
    15·1 answer
  • For work to be accomplished we much have
    10·2 answers
  • ____ is the study of things getting faster as they move.
    5·2 answers
  • Negative acceleration is also known as
    11·2 answers
  • If you throw a baseball straight up,What is its velocity at the highest point?​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!