Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°
Answer:
The time of flight of the ball is 1.06 seconds.
Explanation:
Given 

Also, 

Let us say the velocity in the x-direction is
and in the y-direction is
. And acceleration in the x-direction is
and in the y-direction is
.
Also,
is distance covered in x and y direction respectively. And
is the time taken by the ball to hit the backboard.
We can write
. Where
is velocity of ball.
Now,


Also,
.
Plugging this value in


So, the time of flight of the ball is 1.06 seconds.
Different layers represent clouds made of gases that condense at different temperatures.
Conductivity is the property of matter in which a substance can transfer heat or electricity
Answer: motion parallax
Explanation:
Motion parallax refers to a form of depth perception whereby objects that are closer to an individual appears to move at a faster speed than the objects that are far.
Therefore, Kate is riding on a train and notices that the wildflowers by the side of the tracks seem to be moving by much faster than the mountains in the distance is an example of motion parallax.