force goes as 1/d^2 ... (2d)^2 => 4d^2 ...
C) decrease by a factor of four
Answer:
Explanation:
i )
In a conservative field like gravitational field , loss of potential energy or work done , depends upon the initial and final point and not the manner in which 2 nd point has been reached . Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
Hence , due to increased mass of larger child , his kinetic energy will be greater .
ii ) Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
iii ) Smaller child undergo free fall , therefore , he will fall with acceleration g . The larger child falls on curved path . So , he will have only a component of
vertical g at any moment . hence average acceleration will be less.
The answers would be:
CONVERGENT boundary - Crust submerges into the mantle
TRANSFORM boundary - neither forms nor submerges
DIVERGENT boundary - new crust forms
If you'd like to know more about the different boundaries, read on:
Convergent boundaries occur when two plates move TOWARDS each other. The event where crust submerges into the mantle is called <em><u>subduction</u></em> and this occurs when an oceanic plate and a continental plate collide. The oceanic plate is more dense and thinner than the continental plate, so it slides under it.
Transform boundaries occur when two plates slide against each other. They move slide side by side, so nothing is formed nor do they go under each other. Although, this type of boundaries create strong earthquakes.
Lastly, divergent boundaries occur when two plates move apart. The separation creates a way for magma to come up. New crust is formed when the magma that seeps out is cooled by its cooler surroundings. This is observed in the mid oceanic ridge.
Answer:
C. her moment of inertia increases and her angular speed decreases
D. her moment of inertia increases and her angular speed decreases
Explanation:
The moment of inertia of a body is the sum of the products of an increment of mass and the square of its distance from the center of rotation. When a spinning person extends her arms, part of her mass increases its distance from the center of rotation, so increases the moment of inertia.
The kinetic energy of a spinning body is jointly proportional to the moment of inertia and the square of the angular speed. Hence an increase in moment of inertia will result in a decrease in angular speed unless there is a change in the rotational kinetic energy.
This effect is used by figure skaters to increase their spin rate by drawing their arms and legs closer to the axis of rotation. Similarly, they can slow the spin by extending arms and legs.
When the person extends her arms, her moment of inertia increases and her angular speed decreases.
_____
<em>Note to those looking for a letter answer</em>
Both choices C and D have identical (correct) wording the way the problem is presented here. You will need to check carefully the wording in any problem you may think is similar.