Answer:
Both are highly reactive.
Explanation:
A has 1 valence electron D has 3
A is sodium D is aluminum
Answer is: theoretical molarity of water is 55.1222 mol/L.<span>
d(H</span>₂O) = 0.9922 g/mL.
M(H₂O) = 2 · Ar(H) + Ar(O) · g/mol.
M(H₂O) = 2 + 16 · g/mol = 18 g/mol.
c(H₂O) = d(H₂O) ÷ M(H₂O).
c(H₂O) = 0.9922 g/mL ÷ 18 g/mol.
c(H₂O) = 0.0551 mol/mL.
c(H₂O) = 0.0551 mol/mL · 1000 mL/L = 55.1222 mol/L.
So basically, the change in color effects the amount of cations in the solution making it a physical change rather than a chemical one, defying the law of conservation of mass! I hope this helped! (The only time the change in color affects the amount of cations is in the Alkaline Earth Metals)
source: college science teacher
Answer:
<h2>mass = 200.23 g</h2>
Explanation:
The density of a substance can be found by using the formula

Since we are finding the mass
<h3>mass = Density × volume</h3>
From the question
Density = 0.81 g/mL
volume = 247.2 mL
Substitute the values into the above formula and solve for the mass
mass = 0.81 × 247.2
= 200.232
We have the final answer as
<h3>mass = 200.23 g to 2 decimal places</h3>
Hope this helps you
<span>We look at the end of the day:
n(HNO3) added = 0.500*17.0/1000 = 0.00850 mol
n(NH3) = 0.200*75.0/1000 - 0.00850 = 0.00650 mol
[NH3] left = 0.00650*1000/(17.0+75.0) = 0.070652
M [OH-] = Kb * [NH3] = 0.070652*1.8*10^(-5) = 1.27174 x 10^(-6)
pOH = -log[OH-] ≈ 5.8956 pH = 14 - pOH ≈ 8.10</span>