The initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C
<h3>How to calculate temperature?</h3>
The initial temperature of the copper metal can be calculated using the following formula on calorimetry:
Q = mc∆T
mc∆T (water) = - mc∆T (metal)
Where;
- m = mass
- c = specific heat capacity
- ∆T = change in temperature
According to this question, a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C. If the final temperature of water is 42.0 °C, the initial temperature of the copper is as follows:
400 × 4.18 × (42°C - 24°C) = 240 × 0.39 × (T - 24°C)
30,096 = 93.6T - 2246.4
93.6T = 32342.4
T = 345.5°C
Therefore, the initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C.
Learn more about temperature at: brainly.com/question/15267055
The arrangement in space and the interatomic distances and angles of the atoms in crystals, usually determined by x-ray diffraction measurements
The state in which all of the external forces acting upon an object are balanced; there is no acceleration. friction ..... quadrupling. doubling distance and quadrupling mass has the overall effect of the force
1) T<span>he dissolution of the salt potassium sulfite:
K</span>₂SO₃(aq) → 2K⁺(aq) + SO₃²⁻(aq).
Potassium has +1 charge because it lost one electron to accomplish stabile electron configuration of noble gas argon.
2) From dissolution reaction: n(K⁺) : n(SO₃²⁻) = 2 : 1.
n(K⁺) = 0.700 mol.
0.700 mol : n(SO₃²⁻) = 2 : 1.
n(SO₃²⁻) = 0.700 mol ÷ 2.
n(SO₃²⁻) = 0.350 mol; amount of sulfite anions.