Explanation:
To delineate the the nature of the bonds that would be formed between the two elements, let us first write the electronic configuration of the two species;
Be = 2, 2
F = 2, 7
Beryllium is a metal with two valence electrons whereas fluorine is a halogen with seven valence electrons.
When Be loses two electrons it becomes isoelectronic with He;
Be → Be²⁺ + 2e⁻
Also, when fluorine gains an electron, it becomes isoelectronic with Ne;
F + e⁻ → F⁻
This loss and gain of electrons between the two elements creates an electrostatic attraction them and they enter into an electrovalent bond.
Hence;
Be²⁺ + 2F⁻ → BeF₂
Answer:
See explanation
Explanation:
If the spot in TLC is below the solvent front, it will be observed that the spot, instead of being separated by the solvent as expected, will just dissolve away in the solvent and zero actual separation of the mixture is achieved.
If the solute is dissolved away instead of being separated by the solvent, then the experiment fails because no actual separation of the mixture is achieved.
Hence, in TLC, the spot must be applied above the solvent front so that the capillary movement of the solvent through the plate can lead to the eventual separation of the components of the mixture since the various components of the mixture will travel at different speeds through the plate.
Also, if the solvent is above the spot, the solvent may evaporate selectively from the points above the spot while separation is ongoing.
Answer:
2Al+3Fe ------- Al2O3+3Fe
this is answer no 2
N2+3H2------- 2NH3
this is answer no 3
I think helps
Best of luck
Answer:
31.1°C
Explanation:
Given parameters:
Temperature = 88°F
The formula of the to convert is:
T°F = T°C - 32 / 1.8 = 
Now input the parameters and solve;
T°F =
T°F = 31.1°C