Answer:
The answer is positively B.
There are so many base pairs that there are individual differences.
Confirmed by my Forensics test today.
Explanation:
What you’re doing is so easy pay attention more I think
A material must readily accept electron flow to be a good conductor of electricity. Electrical conductors are electrical charge carriers with electrons that move with ease from atom to atom when charged with voltage. Examples of good conductors are copper, brass, steel, gold, and aluminum.
Answer:
Explanation:
Given that,
Radius of solenoid R = 4cm = 0.04m
Turn per length is N/l = 800 turns/m
The rate at which current is increasing di/dt = 3 A/s
Induced electric field?
At r = 2.2cm=0.022m
µo = 4π × 10^-7 Wb/A•m
The magnetic field inside a solenoid is give as
B = µo•N•I
The value of electric field (E) can
only be a function of the distance r from the solenoid’s axis and it give as,
From gauss law
∮E•dA =qenc/εo
We can find the tangential component of the electric field from Faraday’s law
∮E•dl = −dΦB/dt
We choose the path to be a circle of radius r centered on the cylinder axis. Because all the requested radii are inside the solenoid, the flux-area is the entire πr² area within the loop.
E∮dl = −d/dt •(πr²B)
2πrE = −πr²dB/dt
2πrE = −πr² d/dt(µo•N•I)
2πrE = −πr² × µo•N•dI/dt
Divide both sides by 2πr
E =- ½ r•µo•N•dI/dt
Now, substituting the given data
E = -½ × 0.022 × 4π ×10^-7 × 800 × 3
E = —3.32 × 10^-5 V/m
E = —33.2 µV/m
The magnitude of the electric field at a point 2.2 cm from the solenoid axis is 33.2 µV/m
where the negative sign denotes counter-clockwise electric field when looking along the direction of the solenoid’s magnetic field.
Complete question is;
a. Two equal sized and shaped spheres are dropped from a tall building. Sphere 1 is hollow and has a mass of 1.0 kg. Sphere 2 is filled with lead and has a mass of 9.0 kg. If the terminal speed of Sphere 1 is 6.0 m/s, the terminal speed of Sphere 2 will be?
b. The cross sectional area of Sphere 2 is increased to 3 times the cross sectional area of Sphere 1. The masses remain 1.0 kg and 9.0 kg, The terminal speed (in m/s) of Sphere 2 will now be
Answer:
A) V_t = 18 m/s
B) V_t = 10.39 m/s
Explanation:
Formula for terminal speed is given by;
V_t = √(2mg/(DρA))
Where;
m is mass
g is acceleration due to gravity
D is drag coefficient
ρ is density
A is Area of object
A) Now, for sphere 1,we have;
m = 1 kg
V_t = 6 m/s
g = 9.81 m/s²
Now, making D the subject, we have;
D = 2mg/((V_t)²ρA))
D = (2 × 1 × 9.81)/(6² × ρA)
D = 0.545/(ρA)
For sphere 2, we have mass = 9 kg
Thus;
V_t = √[2 × 9 × 9.81/(0.545/(ρA) × ρA))]
V_t = 18 m/s
B) We are told that The cross sectional area of Sphere 2 is increased to 3 times the cross sectional area of Sphere 1.
Thus;
Area of sphere 2 = 3A
Thus;
V_t = √[2 × 9 × 9.81/(0.545/(ρA) × ρ × 3A))]
V_t = 10.39 m/s