Answer:
The correct solution is "15 kgm/s". A further explanation is given below.
Explanation:
The given values are:
Mass,
m = 5 kg
Velocity,
v = 3 m/s
By applying the formula of momentum, we get
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
The second option
You can see it in the name that see represents carbon and H represents hydrogen on the periodic table. The numbers after it are the amount of items that are in the molecule
Answer:


Explanation:
Given:
- mass of the object,

- elastic constant of the connected spring,

- coefficient of static friction between the object and the surface,

(a)
Let x be the maximum distance of stretch without moving the mass.
<em>The spring can be stretched up to the limiting frictional force 'f' till the body is stationary.</em>


where:
N = m.g = the normal reaction force acting on the body under steady state.


(b)
Now, according to the question:
- Amplitude of oscillation,

- coefficient of kinetic friction between the object and the surface,

Let d be the total distance the object travels before stopping.
<em>Now, the energy stored in the spring due to vibration of amplitude:</em>

<u><em>This energy will be equal to the work done by the kinetic friction to stop it.</em></u>




<em>is the total distance does it travel before stopping.</em>
Answer:
two wavelength are present
as wavelength is counted either from crest to crest or trough to trough and there are only 2
D all of the above Hope this helps
!