Option E, Fiat money includes currency, checking deposits and credit cards
.
<u>Explanation:
</u>
Fiat money has been the currency issued by the government which is not sponsored by actual resources like gold or silver, but by the country that approved it.
Instead of the price of a product, the valuation of fiat money is extracted from the connection between production and consumption and stability of the authorizing state. Fiat currencies, including that of the U.S. dollar, euro, and other major international currencies seem to be the most common paper currencies.
One risk for fiat money is to print too many of those by regimes that contribute to hyperinflation.
Fiat money is government-supported monetary money and is treated as a legal tender. The capital is provided by physical goods such as valuable metals or instruments including checks and credit cards. The world currencies, backed by gold, were symbolic until 1971.
Answer:
gravitational force attract us towards the ground
Explanation:
Answer:
B
Explanation:
I'm learning it in science.
we assume the acceleration is constant. we choose the initial and final points 1.40s apart, bracketing the slowing-down process. then we have a straightforward problem about a particle under constant acceleration. the initial velocity is v xi =632mi/h=632mi/h( 1mi 1609m )( 3600s 1h )=282m/s (a) taking v xf =v xi +a x t with v xf =0 a x = t v xf −v xf = 1.40s 0−282m/s =−202m/s 2 this has a magnitude of approximately 20g (b) similarly x f −x i = 2 1 (v xi +v xf )t= 2 1 (282m/s+0)(1.40s)=198m
Answer:
distance between the objects
masses of the objects
Explanation:
Gravitational force is a force of attraction that pulls two objects with masses together.
To best understand the concept of gravitational force, newton's law of universal gravitation provides a good insight. The law states that "every object in the universe attracts each other with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
From the law, we see that gravitational force is dependent on the masses of the object and their distances.