From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Answer:
Please find the answer in the explanation
Explanation:
Friction is a force that opposes motion. One or two of the advantages of friction are break and ability of an object to walk.
Writing yes it is useful because when your writing because friction helps you see what your writing
ii. Rubbing. Yes, it is useful.
friction make it possible for two object to rub each other
iii. Skiing. No. It is not useful because With presence of friction, skiing will not be possible.
iv. Rotating a wheel No. It is not useful because Friction will oppose the rotation of the wheel.
Density = Mass divided by Volume
Answer:
10
Explanation:
We can look at this problem as a triangle, r is the hypotenuse so if we take the square root of 6^2+8^2 we get 10
Answer:
0.5 m
14.00595
8 m/s, 0.0625 s
5.71314 m/s
Explanation:
k = Spring constant = 128 N/m
A = Amplitude
E = Energy in spring = 16 J
Energy in spring is given by

The amplitude is 0.5 m
Time period is given by

Number of oscillations is given by

The number of oscillations is 14.00595
For maximum speed

The maximum speed is 8 m/s
For a distance of 0.5 m which is the amplitude

The time taken would be 0.0625 s
The maximum kinetic energy is equal to the mechanical energy

At x = 0.35 m

The speed of the block is 5.71314 m/s