1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
3 years ago
6

7. A ball of mass m makes a head-on elastic collision with a second ball (at rest) and rebounds with a speed equal to 0.450 its

original speed. What is the mass of the second ball
Physics
1 answer:
emmasim [6.3K]3 years ago
6 0

Answer:

mass of the second ball is 0.379m

Explanation:

Given;

mass of first ball = m

let initial velocity of first ball = u₁

let final velocity of first ball  = v₁ = 0.45u₁

let the mass of the second ball = m₂

initial velocity of the second ball, u₂ = 0

let the final velocity of the second ball = v₂

Apply the principle of conservation of linear momentum;

mu₁ + m₂u₂ = mv₁ + m₂v₂

mu₁  +  0  = 0.45u₁m + m₂v₂

mu₁  = 0.45u₁m + m₂v₂ -------- equation (i)

Velocity for elastic collision in one dimension;

u₁ + v₁ = u₂ + v₂

u₁ + 0.45u₁ = 0 + v₂

1.45u₁ = v₂ (final velocity of the second ball)

Substitute in v₂ into equation (i)

mu₁  = 0.45u₁m + m₂(1.45u₁)

mu₁ = 0.45u₁m + 1.45m₂u₁

mu₁ - 0.45u₁m = 1.45m₂u₁

0.55mu₁ = 1.45m₂u₁

divide both sides by u₁

0.55m = 1.45m₂

m₂ = 0.55m / 1.45

m₂ = 0.379m

Therefore, mass of the second ball is 0.379m (where m is mass of the first ball)

You might be interested in
Atmospheric pressure is due to the weight _______
Kryger [21]

Of the gravitational pull and other things like mass. Planet earth it,s self as you said sir.

7 0
3 years ago
What element is formed in the following nuclear reaction
MissTica

Answer:

Oxygen or more precisely, the O-15 isotope.

4 0
3 years ago
Issac and Blaise decide to race. They both start at the same position at the same time. Issac runs at 2m/s but decides to take a
FromTheMoon [43]

Let the Blaise runs for time "t" to complete the race

so the total distance he moved is given by

d_1 = 1* t

Now Issac runs for time t = "t - 2*60"

because it took rest for 2 minutes

d_2 = 2*(t - 120)

now it is given that Blaise wins by 10 m distance

d_1 - d_2 = 10

1* t - 2*(t - 120) = 10

t - 2t + 240 = 10

t = 230 s

now the distance moved by Blaise is given by

d_1 = 1*230 = 230 m

6 0
3 years ago
Can you please help me find the answer
Serggg [28]
Im sorry may you please retake the picture then i will answer
8 0
3 years ago
A 125-kg astronaut (including space suit) acquires a speed of 2.50 m/s by pushing off with her legs from a 1900-kg space capsule
ryzh [129]

(a) 0.165 m/s

The total initial momentum of the astronaut+capsule system is zero (assuming they are both at rest, if we use the reference frame of the capsule):

p_i = 0

The final total momentum is instead:

p_f = m_a v_a + m_c v_c

where

m_a = 125 kg is the mass of the astronaut

v_a = 2.50 m/s is the velocity of the astronaut

m_c = 1900 kg is the mass of the capsule

v_c is the velocity of the capsule

Since the total momentum must be conserved, we have

p_i = p_f = 0

so

m_a v_a + m_c v_c=0

Solving the equation for v_c, we find

v_c = - \frac{m_a v_a}{m_c}=-\frac{(125 kg)(2.50 m/s)}{1900 kg}=-0.165 m/s

(negative direction means opposite to the astronaut)

So, the change in speed of the capsule is 0.165 m/s.

(b) 520.8 N

We can calculate the average force exerted by the capsule on the man by using the impulse theorem, which states that the product between the average force and the time of the collision is equal to the change in momentum of the astronaut:

F \Delta t = \Delta p

The change in momentum of the astronaut is

\Delta p= m\Delta v = (125 kg)(2.50 m/s)=312.5 kg m/s

And the duration of the push is

\Delta t = 0.600 s

So re-arranging the equation we find the average force exerted by the capsule on the astronaut:

F=\frac{\Delta p}{\Delta t}=\frac{312.5 kg m/s}{0.600 s}=520.8 N

And according to Newton's third law, the astronaut exerts an equal and opposite force on the capsule.

(c) 25.9 J, 390.6 J

The kinetic energy of an object is given by:

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

For the astronaut, m = 125 kg and v = 2.50 m/s, so its kinetic energy is

K=\frac{1}{2}(125 kg)(2.50 m/s)^2=390.6 J

For the capsule, m = 1900 kg and v = 0.165 m/s, so its kinetic energy is

K=\frac{1}{2}(1900 kg)(0.165 m/s)^2=25.9 J

3 0
4 years ago
Other questions:
  • A race car travels 44.3 m/s around a banked (45° with the horizontal) circular (radius = 200 m) track. What is the magnitude of
    6·1 answer
  • Power _____. A. is the rate of doing work B. is work times displacement C. is force times displacement D. depends only on the wo
    11·1 answer
  • How many hours are in a month of 30 days?
    6·1 answer
  • as you move from left to right across the electromagnetic spectrum in the image, the wavelength becomes a. longer b. lower c. sh
    13·1 answer
  • Hisisisisisisiisisiis
    13·2 answers
  • A bus starts to move from rest. if if its velocity becomes 90 km per hour after 8s calculate its acceleration
    14·1 answer
  • Four satellites are in orbit around the Earth. The heights of their four orbits
    11·1 answer
  • Please help me with this
    6·1 answer
  • .A car skid for 290 m. assuming that the car skidded to a stop with a constant
    9·1 answer
  • What is the symbol of the ion having 12 protons and 10 electrons?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!