The forces of attraction between water molecules and the glass walls and within the molecules of water themselves are what enable the water to rise in a thin tube immersed in water.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Force is defined as the product of mass and acceleration. Its unit is Newton.
Surface or interfacial forces lead to capillarity. The forces of attraction between the water molecules and the glass walls and among the water molecules themselves are what causes the water in a thin tube submerged in water to rise.
Hence, the water rises up a thin capillary tube can be explained by Newton's third law.
To learn more about the force refer to the link;
brainly.com/question/26115859#SPJ1
#SPJ1
Answer;
D. rocket engines are not dependent on oxygen from the air.
Explanation;
-Jet engines and rockets work on the same principle. They produce thrust through an internal pressure difference and, as explained by Newton’s Third Law of Motion, eject exhaust gases in an equal and opposite direction.
-The main difference between them is that jets get the oxygen to burn fuel from the air and rockets carry their own oxygen, which allows them to operate in space.
Additionally, Jet engines have two openings (an intake and an exhaust nozzle). Rocket engines only have one opening (an exhaust nozzle).
Answer:
Heat needed = 71.19 J
Explanation:
Here heat required can be calculated by the formula
H = mL
M is the mass of water and L is the latent heat of vaporization.
Mass of water, m = 31.5 g = 0.0315 kg
Latent heat of vaporization of water = 2260 kJ/kg
Substituting
H = mL = 0.0315 x 2260 = 71.19 kJ
Heat needed = 71.19 J
Answer:
44.7 N
Explanation:
The gravitational force between the objects is given by:

where
G is the gravitational constant
m and M are the masses of the two objects
r is the distance between the centres of the two objects
In this problem, we have:
is the mass of the sphere
is the Earth's mass
is the Earth's radius, while h=310 km is the altitude of the sphere, so the distance of the sphere from Earth's centre is

Substituting into the equation, we find

As the speed increases and the pressure decreases