Answer:
461.88 N
Explanation:
= Weight of the swing = 800 N
= Tension force in the rope
= Horizontal force being applied by the partner
Using equilibrium of force in vertical direction using the force diagram, we get

Using equilibrium of force in horizontal direction using the force diagram, we get

Answer:
i think..its fraction that its have multiple fractions on it..if you minus the 397 000-355 it should be 381+ so i say if you get the 5 multiply it by 9!! so you will get it!
Explanation:
HOPE IT HELPS!!
A).
It would decrease because the speed of sound and temperature are proportional.
The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.
Em = K + U
Let's write the energy in two points.
Starting point. Highest part of the oscillation
Em₀ = U = m g h
Final point. Lower part of the movement
= K = ½ m v²
Energy is conserved.
Emo =
m g h = ½ m v²
v² = 2 gh
Let's use trigonometry to find the height, see attached.
h = L - L cos θ
h = L (1- cos θ)
They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.
h = 3.7 (1- cos 48)
h = 1.22 m
this is the maximum height of the movement.
Let's calculate the velocity.
v = 4.89 m / s
In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
Learn more here: brainly.com/question/13010190
I believe all of these would be known as specific phobias.