Answer:
40 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Work done is simply defined as the product of force and distance moved in the direction of the force. Mathematically, we can express the Workdone as:
Workdone = force × distance
Wd = F × s
With the above formula, we can obtain the workdone as follow:
Force (F) = 10 N
Distance (s) = 4 m
Workdone (Wd) =?
Wd = F × s
Wd = 10 × 4
Wd = 40 J
Thus, 40 J of work was done.
The correct answer is "wavelength".
In fact, this is exactly the definition of wavelength: in a wave, the wavelength is defined as the distance between two succesive crests or two successive troughs, therefore the correct answer is
D) wavelength.
Explanation:
We know,
1KN = 1000N
Then, Force(F) = 5*1000N
=5000N
Here,
Power (P)=Work(W)/Time(T)
=Force * distance/ Time (W = F*s)
= 5000*15/75
=1000
So, The power of body or object is 1000Watt.
I hope this will be helpful for you.
The phase is called 3rd quarter.
Hope this helps:)
The final temperature of the mixture is closest to 32.5 °C
<h3>Data obtained from the question</h3>
- Mass of warm water (Mᵥᵥ) = 50 g
- Temperature warm water (Tᵥᵥ) = 40 °C
- Mass of cold water (M꜀) = 30 g
- Temperature of cold water (T꜀) = 20 °C
- Specific heat capacity of the water = 4.184 J/gºC
- Equilibrium temperature (Tₑ) =?
<h3>How to determine the equilibrium temperature </h3>
Heat loss = Heat gain
MᵥᵥC(Tᵥᵥ – Tₑ) = M꜀C(Tₑ – M꜀)
50 × 4.184 (40 – Tₑ) = 30 × 4.184(Tₑ – 20)
209.2(40 – Tₑ) = 125.52(Tₑ – 20)
Clear bracket
8368 – 209.2Tₑ = 125.52Tₑ – 2510.4
Collect like terms
8368 + 2510.4 = 125.52Tₑ + 209.2Tₑ
10878.4 = 334.72Tₑ
Divide both side by 334.72
Tₑ = 10878.4 / 334.72
Tₑ = 32.5 °C
Learn more about heat transfer:
brainly.com/question/6363778