That they are random, constant, and straight -line motion.
<span>The surface area is 109.3 square centimeters or 0.01093 square meters. The area formula requires that we use the radius of the disc. We can find the radius by diving the diameter by 2, so radius = 11.8/2 or 5.9 cm. We can use 3.14 as an approximation for π. The surface area is 3.14 * (5.9*5.9).
Since the diameter is given in cm, the surface area units are in square centimeters. To convert to meters, divide any measurement in centimeters by 100, but we need to convert to "square" meters, so we need to divide our square centimeters by 100 * 100, or by 10,000. Dividing 109.3 by 10,000 results in 0.01093 square "meters".</span>
A glow stick will glow longer at lower temperatures than at room temperature, one can infer from the observation. Temperature and reaction time are the test variables.
We notice in this reaction that a glow stick stored in the freezer lights for a longer period of time than a glow stick stored at normal temperature. This implies that temperature affects how long a response lasts.
The most straightforward explanation for this observation is that glow sticks glow longer in colder temperatures than they do at room temperature; as a result, glow sticks kept in the freezer are observed to glow longer than glow sticks kept at room temperature.
To learn more about chemicals to the given link:
brainly.com/question/24600141
#SPJ4
We need the reading for this I think
Start by converting mg to g. There is .001g in every miligram, so there is 0.4g in this sample.
Then find the molar mass of ibuprofen (C13H18O2) which is 206.3g/mol
Then divide grams by the molar mass to get moles of C13H18O2: (0.4g)/(206.3g/mol) = 1.94x10^-3mol C13H18O2
Then multiply moles by Avogadro's number to get molecules: (1.94x10^-3mol)/(6.02x10^23) = 1.17x10^21 molecules of ibuprofen (C13H18O2)