Explanation:
the answer and the working out is shown above, hope it helps.
The heat lost by the metal should be equal to the heat
gained by the water. We know that the heat capacity of water is simply 4.186 J
/ g °C. Therefore:
100 g * 4.186 J / g °C * (31°C – 25.1°C) = 28.2 g * Cp *
(95.2°C - 31°C)
<span>Cp = 1.36 J / g °C</span>
<u>Answer:</u>
<u>For a:</u> The balanced equation is 
<u>For c:</u> The balanced equation is 
<u>Explanation:</u>
A balanced chemical equation is one where all the individual atoms are equal on both sides of the reaction. It follows the law of conservation of mass.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of both
and
and 3 in front of 
For the balanced chemical equation:

The given balanced equation follows:

The given equation is already balanced.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of 
For the balanced chemical equation:
The given balanced equation follows:

The given equation is already balanced.
i believe it would be B '' tetrahedral compound ''
Answer:
See explanation
Explanation:
Electron affinity is the energy released when an extra electron is added to a neutral gaseous atom. A negative value of electron affinity indicates that energy is given out and vice versa.
Metals have positive electron affinity since electrons rarely accept electrons, so;
Na(g)+ 1e^- → Na^-(g) positive
Mg(g)+1e^- → Mg^-(g) positive
For the last case; Br(g)+ 1e^- → Br^-(g), the electron affinity for the non-metals is negative. hence the answer