Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

1. Renewable Resources = (Renewable means you can keep making it) = resources that can be replenished (such as trees)
2. Nonrenewable Resources = ( Nonrenewable means it can't be made once it is used up) = resources that are gone once they are used (such as fossil fuels)
3. Producer = ( produces something) = person who makes goods or provides services
4. Consumer = ( uses something) = person whose wants are satisfied by using goods and services
5. Allocate = ( put someplace) = distribute
6. Choice = option
Answer: drugs and rushing cars
Explanation: drug dealers are everywhere on city streets nowadays they have been killing young adults
rushing cars or reckless drivers cut curb fast and potentially someone can get hurt they are speeding and not worrying about other people lives at stake
Answer:
#include <stdio.h>
typedef struct InventoryTag_struct {
int itemID;
int quantityRemaining;
} InventoryTag;
int main(void) {
InventoryTag redSweater;
redSweater.itemID = 314;
redSweater.quantityRemaining = 500;
/* Your solution goes here */
printf("Inventory ID: %d, Qty: %d\n",redSweater.itemID,redSweater.quantityRemaining);
getchar();
return 0;
}
Explanation: